Strict convexity and the regularity of solutions to variational problems
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 862-871.

We consider the problem of minimizing

Ω [L(v(x))+g(x,v(x))]dxonu 0 +W 0 1,2 (Ω)
where Ω is a bounded open subset of N and L is a convex function that grows quadratically outside the unit ball, while, when |v|<1, it behaves like |v| p with 1<p<2. We show that, for each ωΩ, there exists a constant H, depending on ω but not on p, such that both
u W 1,2 (ω) Handu |u| 2-p W 1,2 (ω) H (p-1) 2 ;
in particular, for every i=1,...N, we have max{|u x i | |u| 2-p ,|u x i |}W loc 1,2 (Ω).

Reçu le :
DOI : 10.1051/cocv/2015034
Classification : 49K10
Mots clés : Regularity of solutions, higher differentiability, strict convexity
Cellina, Arrigo 1

1 Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, Via R. Cozzi 53, 20125 Milano, Italy
@article{COCV_2016__22_3_862_0,
     author = {Cellina, Arrigo},
     title = {Strict convexity and the regularity of solutions to variational problems},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {862--871},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015034},
     mrnumber = {3527948},
     zbl = {1344.49059},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015034/}
}
TY  - JOUR
AU  - Cellina, Arrigo
TI  - Strict convexity and the regularity of solutions to variational problems
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 862
EP  - 871
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015034/
DO  - 10.1051/cocv/2015034
LA  - en
ID  - COCV_2016__22_3_862_0
ER  - 
%0 Journal Article
%A Cellina, Arrigo
%T Strict convexity and the regularity of solutions to variational problems
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 862-871
%V 22
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015034/
%R 10.1051/cocv/2015034
%G en
%F COCV_2016__22_3_862_0
Cellina, Arrigo. Strict convexity and the regularity of solutions to variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 862-871. doi : 10.1051/cocv/2015034. http://archive.numdam.org/articles/10.1051/cocv/2015034/

E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals. The case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115–135. | DOI | MR | Zbl

E. Dibenedetto, C1+ local regularity of weak solutions of degenerate elliptic equations. Nonlin. Anal. 7 (1983) 827–850. | DOI | MR | Zbl

L. Esposito and G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems. Rev. Mat. Complut. 11 (1998) 203–219. | MR | Zbl

A. Cellina, A case of regularity of solutions to non-regular problems. SIAM J. Control. Optim. 53 (2015) 2835–2845. | DOI | MR | Zbl

M. Colombo and A. Figalli, An excess-decay result for a class of degenerate elliptic equations. Discr. Contin. Dyn. Syst. Ser. S 7 (2014) 631–652. | MR | Zbl

J.L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J. 32 (1983) 849–858. | DOI | MR | Zbl

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations. J. Differ. Eq. 51 (1984) 126–150. | DOI | MR | Zbl

K. Ulhenbeck, Regularity for a class of non-linear elliptic systems. Acta Math. 138 (1977) 219–240. | DOI | MR | Zbl

Cité par Sources :