Almost convex valued perturbation to time optimal control sweeping processes
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 1-12.

In this work, we study the existence of solutions of a perturbed sweeping process and of a time optimal control problem under a condition on the perturbation that is strictly weaker than the usual assumption of convexity.

Reçu le :
DOI : 10.1051/cocv/2015036
Classification : 34A60, 28A25, 28A20
Mots clés : Differential inclusion, almost convex set, attainable set
Affane, Doria 1 ; Azzam-Laouir, Dalila 1

1 Laboratory of Pure and Applied Mathematics, University of Jijel, 18000 Jijel, Algeria.
@article{COCV_2017__23_1_1_0,
     author = {Affane, Doria and Azzam-Laouir, Dalila},
     title = {Almost convex valued perturbation to time optimal control sweeping processes},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--12},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015036},
     mrnumber = {3601013},
     zbl = {1366.34029},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015036/}
}
TY  - JOUR
AU  - Affane, Doria
AU  - Azzam-Laouir, Dalila
TI  - Almost convex valued perturbation to time optimal control sweeping processes
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 1
EP  - 12
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015036/
DO  - 10.1051/cocv/2015036
LA  - en
ID  - COCV_2017__23_1_1_0
ER  - 
%0 Journal Article
%A Affane, Doria
%A Azzam-Laouir, Dalila
%T Almost convex valued perturbation to time optimal control sweeping processes
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 1-12
%V 23
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015036/
%R 10.1051/cocv/2015036
%G en
%F COCV_2017__23_1_1_0
Affane, Doria; Azzam-Laouir, Dalila. Almost convex valued perturbation to time optimal control sweeping processes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 1-12. doi : 10.1051/cocv/2015036. http://archive.numdam.org/articles/10.1051/cocv/2015036/

D. Affane and D. Azzam-Laouir, Second-order differential inclusions with almost convex right-hand sides. Electron. J. Qual. Theory Differ. Equ. 34 (2011) 1–14. | MR | Zbl

J.P. Aubin and A. Cellina, Differential inclusions set valued maps and viability theory. Springer-Verlag, Berlin (1984). | MR | Zbl

M. Bounkhel and L. Thibault, Nonconvex sweeping process and prox-regularity in Hilbert space. J. Nonlinear Convex Anal. 6 (2005) 359–374. | MR | Zbl

C. Castaing and M. Valadier, Convex analysis and measurable multifunctions. Vol. 580 of Lect. Notes Math. Springer-Verlag, Berlin (1977). | MR | Zbl

C. Castaing and M.D.P. Monteiro Marques, Evolution problems associated with nonconvex closed moving sets. Portugal. Math. 53 (1996) 73–87. | MR | Zbl

C. Castaing, T.X. Duc Ha and M. Valadier, Evolution equations governed by the sweeping process. Set-Valued Anal. 1 (1993) 109–139. | DOI | MR | Zbl

C. Castaing, A. Salvadori and L. Thibault, Functional evolution equations governed by nonconvex sweeping process. J. Nonlin. Convex Anal. 2 (2001) 217–241. | MR | Zbl

A. Cellina and G. Colombo, On a classical problem of the calculus of variations without convexity assumption. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990) 97–106. | DOI | Numdam | MR | Zbl

A. Cellina and A. Ornelas, Existence of solution to differential inclusion and optimal control problems in the autonomous case. Siam J. Control Optim. 42 (2003) 260–265. | DOI | MR | Zbl

F.H. Clarke, Optimization and Nonsmooth Analysis. John Wiley and Sons (1983). | MR | Zbl

F.H. Clarke, R.L. Stern and P.R. Wolenski, Proximal smoothness and the lower C 2 property. J. Convex Anal. 2 (1995) 117–144. | MR | Zbl

A.F. Filippov, On certain questions in the theory of optimal control. Vestnik. Univ., Ser. Mat. Mech. 2 (1959) 25–32; Translated in [SIAM J. Control 1 (1962) 76–84]. | MR | Zbl

R.A. Poliquin, R.T. Rockafellar and L. Thibault, Local differentiability of distance functions. Trans. Math. Soc. 352 (2000) 5231–5249. | DOI | MR | Zbl

Cité par Sources :