Optimal control of elliptic equations with positive measures
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 217-240.

Optimal control problems without control costs in general do not possess solutions due to the lack of coercivity. However, unilateral constraints together with the assumption of existence of strictly positive solutions of a pre-adjoint state equation, are sufficient to obtain existence of optimal solutions in the space of Radon measures. Optimality conditions for these generalized minimizers can be obtained using Fenchel duality, which requires a non-standard perturbation approach if the control-to-observation mapping is not continuous (e.g., for Neumann boundary control in three dimensions). Combining a conforming discretization of the measure space with a semismooth Newton method allows the numerical solution of the optimal control problem.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015046
Classification : 49J20, 49K20, 49N15
Mots-clés : Optimal control, measure control, control constraints, Fenchel duality, unbounded operators
Clason, Christian 1 ; Schiela, Anton 2

1 Faculty of Mathematics, University Duisburg-Essen, 45117 Essen, Germany.
2 Institute of Mathematics, University of Bayreuth, 95440 Bayreuth, Germany.
@article{COCV_2017__23_1_217_0,
     author = {Clason, Christian and Schiela, Anton},
     title = {Optimal control of elliptic equations with positive measures},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {217--240},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {1},
     year = {2017},
     doi = {10.1051/cocv/2015046},
     mrnumber = {3601022},
     zbl = {1365.49005},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015046/}
}
TY  - JOUR
AU  - Clason, Christian
AU  - Schiela, Anton
TI  - Optimal control of elliptic equations with positive measures
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 217
EP  - 240
VL  - 23
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015046/
DO  - 10.1051/cocv/2015046
LA  - en
ID  - COCV_2017__23_1_217_0
ER  - 
%0 Journal Article
%A Clason, Christian
%A Schiela, Anton
%T Optimal control of elliptic equations with positive measures
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 217-240
%V 23
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015046/
%R 10.1051/cocv/2015046
%G en
%F COCV_2017__23_1_217_0
Clason, Christian; Schiela, Anton. Optimal control of elliptic equations with positive measures. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 1, pp. 217-240. doi : 10.1051/cocv/2015046. http://archive.numdam.org/articles/10.1051/cocv/2015046/

H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). | MR | Zbl

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010). | MR | Zbl

E. Casas, L 2 estimates for the finite element method for the Dirichlet problem with singular data. Numer. Math. 47 (1985) 627–632. | DOI | MR | Zbl

E. Casas, C. Clason and K. Kunisch, Approximation of elliptic control problems in measure spaces with sparse solutions. SIAM J. Control Optim. 50 (2012) 1735–1752. | DOI | MR | Zbl

E. Casas and K. Kunisch, Optimal control of semilinear elliptic equations in measure spaces. SIAM J. Control Optim. 52 (2014) 339–364. | DOI | MR | Zbl

C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM: COCV 17 (2011) 243–266. | Numdam | MR | Zbl

C. Clason and K. Kunisch, A measure space approach to optimal source placement. Comput. Optim. Appl. 53 (2011) 155–171. | DOI | MR | Zbl

K. Deckelnick and M. Hinze, A note on the approximation of elliptic control problems with bang-bang controls. Comput. Optim. Appl. 51 (2012) 931–939. | DOI | MR | Zbl

I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Vol. 28 of Classics Appl. Math. SIAM, Philadelphia (1999). | MR | Zbl

D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer (1977). | MR

S. Goldberg, Unbounded Linear Operators. Dover Publications Inc., Mineola, NY (2006). | MR

R. Haller-Dintelmann, C. Meyer, J. Rehberg and A. Schiela, Hölder continuity and optimal control for nonsmooth elliptic problems. Appl. Math. Optim. 60 (2009) 397–428. | DOI | MR | Zbl

M. Hinze, A variational discretization concept in control constrained optimization: The linear-quadratic case. Comput. Optim. Appl. 30 (2005) 45–61. | DOI | MR | Zbl

K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. Vol. 15 of Adv. Design Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008). | MR | Zbl

C. Meyer, L. Panizzi and A. Schiela, Uniqueness criteria for solutions of the adjoint equation in state-constrained optimal control. Numer. Funct. Anal. Optim. 32 (2011) 983–1007. | DOI | MR | Zbl

H.H. Schaefer and M.P. Wolff, Topological Vector Spaces. Vol. 3 of Grad. Texts Math. 2nd edition. Springer-Verlag, New York (1999). | MR | Zbl

A. Schiela, State constrained optimal control problems with states of low regularity. SIAM J. Control Optim. 48 (2009) 2407–2432. | DOI | MR | Zbl

G. Stadler, Elliptic optimal control problems with L 1 -control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. | DOI | MR | Zbl

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. | DOI | Numdam | MR | Zbl

G.M. Troianiello. Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics. Plenum Press (1987). | MR | Zbl

F. Tröltzsch, Optimal Control of Partial Differential Equations. Theory, methods and applications. Vol. 112 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2010). | MR | Zbl

M. Ulbrich, Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13 (2003) 805–842 (2002). | DOI | MR | Zbl

D. Wachsmuth and G. Wachsmuth, Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: COCV 17 (2011) 858–886. | Numdam | MR | Zbl

R. Winther, Error estimates for a Galerkin approximation of a parabolic control problem. Ann. Mat. Pura Appl. 117 (1978) 173–206. | DOI | MR | Zbl

Cité par Sources :