Eventual differentiability of a string with local Kelvin–Voigt damping
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 443-454.

In this paper, we study a wave equation with local Kelvin–Voigt damping, which models one-dimensional wave propagation through two segments consisting of an elastic and a viscoelastic medium. Under the assumption that the damping coefficients change smoothly near the interface, we prove that the semigroup corresponding to the system is eventually differentiable.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2015055
Classification : 35M20, 35Q72, 74D05
Mots-clés : Semigroup, local Kelvin–Voigt damping, eventual differentiability of semigroup
Liu, Kangsheng 1 ; Liu, Zhuangyi 2 ; Zhang, Qiong 3, 4

1 Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China.
2 Department of Mathematics and Statistics, University of Minnesota, Duluth, MN 55812-2496, USA.
3 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P.R. China.
4 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, P.R. China
@article{COCV_2017__23_2_443_0,
     author = {Liu, Kangsheng and Liu, Zhuangyi and Zhang, Qiong},
     title = {Eventual differentiability of a string with local {Kelvin{\textendash}Voigt} damping},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {443--454},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2015055},
     zbl = {1362.35195},
     mrnumber = {3608088},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015055/}
}
TY  - JOUR
AU  - Liu, Kangsheng
AU  - Liu, Zhuangyi
AU  - Zhang, Qiong
TI  - Eventual differentiability of a string with local Kelvin–Voigt damping
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 443
EP  - 454
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015055/
DO  - 10.1051/cocv/2015055
LA  - en
ID  - COCV_2017__23_2_443_0
ER  - 
%0 Journal Article
%A Liu, Kangsheng
%A Liu, Zhuangyi
%A Zhang, Qiong
%T Eventual differentiability of a string with local Kelvin–Voigt damping
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 443-454
%V 23
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015055/
%R 10.1051/cocv/2015055
%G en
%F COCV_2017__23_2_443_0
Liu, Kangsheng; Liu, Zhuangyi; Zhang, Qiong. Eventual differentiability of a string with local Kelvin–Voigt damping. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 2, pp. 443-454. doi : 10.1051/cocv/2015055. http://archive.numdam.org/articles/10.1051/cocv/2015055/

C. Bardos, L. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control. Optim. 30 (1992) 1024–1065. | DOI | MR | Zbl

A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347 (2010) 455–478. | DOI | MR | Zbl

N. Burq and H. Christianson, Imperfect geometric control and overdamping for the damped wave equation. Commun. Math. Phys. 336 (2015) 101–130. | DOI | MR | Zbl

G. Chen, S.A. Fulling, F.J. Narcowich and S. Sun, Exponential decay of energy of evolution equation with locally distributed damping. SIAM J. Appl. Math. 51 (1991) 266–301. | DOI | MR | Zbl

S. Chen, K. Liu and Z. Liu, Spectrum and stability for elastic systems with global or local Kelvin–Voigt damping. SIAM J. Appl. Math. 59 (1998) 651–668. | DOI | MR | Zbl

M. Enbree, private communication (2001).

K. Liu, X. Liu and B. Rao, Eventual regularity of a wave equation with boundary dissipation. Math. Control Relat. Fields 2 (2012) 17–18. | DOI | MR | Zbl

K. Liu and Z. Liu, Exponential decay of energy of vibrating strings with local viscoelasticity. Z. Angew. Math. Phys. 53 (2002) 265–280. | DOI | MR | Zbl

K. Liu and B. Rao, Exponential stability for the wave equation with local Kelvin–Voigt damping. Z. Angew. Math. Phys. 57 (2006) 419–432. | DOI | MR | Zbl

Z. Liu and B. Rao, Frequency domain characterization of rational decay rate for solution of linear evolution equations. Z. Angew. Math. Phys. 56 (2005) 630–644. | DOI | MR | Zbl

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New York (1983). | MR | Zbl

M. Renardy, On localized Kelvin–Voigt damping. Z. Angew. Math. Mech. 84 (2004) 280–283. | DOI | MR | Zbl

Q. Zhang, Exponential stability of an elastic string with local Kelvin–Voigt damping. Z. Angew. Math. Phys. 61 (2010) 1009–1015. | DOI | MR | Zbl

Cité par Sources :