On the quantitative isoperimetric inequality in the plane
ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 2, pp. 517-549.

In this paper we study the quantitative isoperimetric inequality in the plane. We prove the existence of a set Ω, different from a ball, which minimizes the ratio δ(Ω)/λ 2 (Ω), where δ is the isoperimetric deficit and λ the Fraenkel asymmetry, giving a new proof of the quantitative isoperimetric inequality. Some new properties of the optimal set are also shown.

Received:
Accepted:
DOI: 10.1051/cocv/2016002
Classification: 28A75, 49J45, 49J53, 49Q10, 49Q20
Keywords: Isoperimetric inequality, quantitative isoperimetric inequality, isoperimetric deficit, Fraenkel asymmetry, rearrangement, shape derivative, optimality conditions
Bianchini, Chiara 1; Croce, Gisella 2; Henrot, Antoine 3

1 Dipartimento di Matematica ed Informatica “U. Dini”, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy.
2 Normandie Univ, France; ULH, LMAH, FR CNRS 3335, 25 rue Philippe Lebon, 76600 Le Havre, France.
3 Institut Élie Cartan de Lorraine UMR CNRS 7502, Université de Lorraine, BP 70239, 54506 Vandoeuvre-les-Nancy cedex, France.
@article{COCV_2017__23_2_517_0,
     author = {Bianchini, Chiara and Croce, Gisella and Henrot, Antoine},
     title = {On the quantitative isoperimetric inequality in the plane},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {517--549},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {2},
     year = {2017},
     doi = {10.1051/cocv/2016002},
     zbl = {1456.49034},
     mrnumber = {3608092},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016002/}
}
TY  - JOUR
AU  - Bianchini, Chiara
AU  - Croce, Gisella
AU  - Henrot, Antoine
TI  - On the quantitative isoperimetric inequality in the plane
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 517
EP  - 549
VL  - 23
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016002/
DO  - 10.1051/cocv/2016002
LA  - en
ID  - COCV_2017__23_2_517_0
ER  - 
%0 Journal Article
%A Bianchini, Chiara
%A Croce, Gisella
%A Henrot, Antoine
%T On the quantitative isoperimetric inequality in the plane
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 517-549
%V 23
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016002/
%R 10.1051/cocv/2016002
%G en
%F COCV_2017__23_2_517_0
Bianchini, Chiara; Croce, Gisella; Henrot, Antoine. On the quantitative isoperimetric inequality in the plane. ESAIM: Control, Optimisation and Calculus of Variations, Volume 23 (2017) no. 2, pp. 517-549. doi : 10.1051/cocv/2016002. http://archive.numdam.org/articles/10.1051/cocv/2016002/

A. Alvino, V. Ferone and C. Nitsch, A sharp isoperimetric inequality in the plane involving Hausdorff distance. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 20 (2009) 397–412. | DOI | MR | Zbl

A. Alvino, V. Ferone and C. Nitsch, A sharp isoperimetric inequality in the plane. J. Eur. Math. Soc. 13 (2011) 185–206. | DOI | MR | Zbl

S. Campi, Isoperimetric deficit and convex plane sets of maximum translative discrepancy. Geom. Dedicata 43 (1992) 71–81. | DOI | MR | Zbl

S. Campi, Three-dimensional Bonnesen type inequalities. Matematiche (Catania) 60 (2005) 425–431. | MR | Zbl

M. Cicalese and G.P. Leonardi, A selection principle for the sharp quantitative isoperimetric inequality. Arch. Ration. Mech. Anal. 206 (2012) 617–643. | DOI | MR | Zbl

M. Cicalese and G.P. Leonardi, Best constants for the isoperimetric inequality in quantitative form. J. Eur. Math. Soc. 15 (2013) 1101–1129. | DOI | MR | Zbl

A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182 (2010) 167–211. | DOI | MR | Zbl

N. Fusco, The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5 (2015) 517–607. | DOI | MR | Zbl

N. Fusco, F. Maggi and A. Pratelli, The sharp quantitative isoperimetric inequality. Ann. Math. 168 (2008) 941–980. | DOI | MR | Zbl

R.R. Hall and W.K. Hayman, A problem in the theory of subordination. J. Anal. Math. 60 (1993) 99–111. | DOI | MR | Zbl

R.R. Hall, W.K. Hayman and A.W. Weitsman, On asymmetry and capacity. J. Anal. Math. 56 (1991) 87–123. | DOI | MR | Zbl

A. Henrot and M. Pierre, Variation et Optimisation de forme, une analyse géométrique. Vol. 48 of Mathématiques et Applications. Springer (2005). | MR | Zbl

G. Li, X. Zhao, Z. Ding, Zongqi and R. Jiang, An analytic proof of the planar quantitative isoperimetric inequality. C. R. Math. Acad. Sci. Paris 353 (2015) 589–593. | DOI | MR | Zbl

F. Maggi, Some methods for studying stability in isoperimetric type problems. Bull. Am. Math. Soc. 45 (2008) 367–408. | DOI | MR | Zbl

Cited by Sources: