Generalized Li−Yau estimates and Huisken’s monotonicity formula
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 827-850.

We prove a generalization of the Li−Yau estimate for a broad class of second order linear parabolic equations. As a consequence, we obtain a new Cheeger−Yau inequality and a new Harnack inequality for these equations. We also prove a Hamilton−Li−Yau estimate, which is a matrix version of the Li−Yau estimate, for these equations. This results in a generalization of Huisken’s monotonicity formula for a family of evolving hypersurfaces. Finally, we also show that all these generalizations are sharp in the sense that the inequalities become equality for a family of fundamental solutions, which however different from the Gaussian heat kernels on which the equality was achieved in the classical case.

DOI : 10.1051/cocv/2016015
Classification : 58J35
Mots-clés : Differential Harnack inequality, monotonicity formula
Lee, Paul W.Y. 1

1 Room 216, Lady Shaw Building, The Chinese University of Hong Kong, Shatin, Hong Kong, P.R. China.
@article{COCV_2017__23_3_827_0,
     author = {Lee, Paul W.Y.},
     title = {Generalized {Li\ensuremath{-}Yau} estimates and {Huisken{\textquoteright}s} monotonicity formula},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {827--850},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016015},
     mrnumber = {3660450},
     zbl = {1369.58018},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016015/}
}
TY  - JOUR
AU  - Lee, Paul W.Y.
TI  - Generalized Li−Yau estimates and Huisken’s monotonicity formula
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 827
EP  - 850
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016015/
DO  - 10.1051/cocv/2016015
LA  - en
ID  - COCV_2017__23_3_827_0
ER  - 
%0 Journal Article
%A Lee, Paul W.Y.
%T Generalized Li−Yau estimates and Huisken’s monotonicity formula
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 827-850
%V 23
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016015/
%R 10.1051/cocv/2016015
%G en
%F COCV_2017__23_3_827_0
Lee, Paul W.Y. Generalized Li−Yau estimates and Huisken’s monotonicity formula. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 827-850. doi : 10.1051/cocv/2016015. http://archive.numdam.org/articles/10.1051/cocv/2016015/

A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint. Vol. 87 of Encyclopaedia of Mathematical Sciences, Control Theory and Optimization, II. Springer-Verlag, Berlin (2004). | MR | Zbl

B. Andrews, Harnack inequalities for evolving hypersurfaces. Math. Z. 217 (1994) 179–197. | DOI | MR | Zbl

D.G. Aronson and P. Bénilan, Régularité des solutions de l’équation des milieux poreux dans RN. C. R. Acad. Sci. Paris Sér. A-B 288 (1979) A103–A105. | MR | Zbl

D. Bakry and M. Ledoux, A logarithmic Sobolev form of the Li−Yau parabolic inequality. Rev. Mat. Iberoam. 22 (2006) 683–702. | DOI | MR | Zbl

A.A. Borisenko and V. Miquel, Gaussian mean curvature flow. J. Evol. Eqn. 10 (2010) 413–423. | DOI | MR | Zbl

S. Brendle, A generalization of Hamilton’s differential Harnack inequality for the Ricci flow. J. Differ. Geom. 82 (2009) 207–227. | DOI | MR | Zbl

P. Cannarsa and C. Sinestrari, Semiconcave functions, Hamilton−Jacobi equations, and optimal control. Vol. 58 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc., Boston, MA (2004). | MR | Zbl

H.-D. Cao, On Harnack’s inequalities for the Kähler-Ricci flow. Invent. Math. 109 (1992) 247–263. | DOI | MR | Zbl

H.-D. Cao and L. Ni, Matrix Li−Yau-Hamilton estimates for heat equation on Kähler manifolds. Math. Ann. 331 (2005) 795–807. | DOI | MR | Zbl

H.-D. Cao and S.-T. Yau, Gradient estimates, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields. Math. Z. 211 (1992) 485–504. | DOI | MR | Zbl

J. Cheeger and S.-T. Yau, A lower bound for the heat kernel. Commun. Pure Appl. Math. 34 (1981) 465–480. | DOI | MR | Zbl

B. Chow, On Harnack’s inequality and entropy for the Gaussian curvature flow. Commun. Pure Appl. Math. 44 (1991) 469–483. | DOI | MR | Zbl

B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature. Commun. Pure Appl. Math. 45 (1992) 1003–1014. | DOI | MR | Zbl

B. Chow, On Harnack’s Inequality and Entropy for the Gaussian curvature flow. Commun. Pure Appl. Math. 44 (1991) 469–483. | DOI | MR | Zbl

L.C. Evans, Partial differential equations. Vol. 19 of Grad. Stud. Math., 2nd edition. American Mathematical Society, Providence, RI (2010). | MR | Zbl

P.B. Gilkey, The spectral geometry of a Riemannian manifold. J. Differ. Geom. 10 (1975) 601–618. | DOI | MR | Zbl

M. Gromov, Isoperimetry of waists and concentration of maps. Geom. Funct. Anal. 13 (2003) 178–215. | DOI | MR | Zbl

R. Hamilton, A matrix Harnack estimate for the heat equation. Commun. Anal. Geom. 1 (1993) 113–126. | DOI | MR | Zbl

R. Hamilton, The Harnack estimate for the Ricci flow. J. Differ. Geom. 37 (1993) 225–243. | DOI | MR | Zbl

R. Hamilton, Monotonicity formulas for parabolic flows on manifolds. Commun. Anal. Geom. 1 (1993) 127–137. | DOI | MR | Zbl

R. Hamilton, Harnack estimate for the mean curvature flow. J. Differ. Geom. 41 (1995) 215–226. | DOI | MR | Zbl

G. Huisken, Asymptotic behavior for singularities of the mean curvature flow. J. Differ. Geom. 31 (1990) 285–299. | DOI | MR | Zbl

P.W.Y. Lee, Differential Harnack inequality for a family of sub-elliptic diffusion equations on Sasakian manifolds. Preprint (2013). | arXiv

P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156 (1986) 153–201. | DOI | MR | Zbl

P. Lu, L. Ni, J-L Vázquez and C. Villani, Local Aronson–Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. 91 (2009) 1–19. | DOI | MR | Zbl

J. Moser, A Harnack Inequality for Parabolic Differential Equations. Commun. Pure Appl. Math. 17 (1964) 101–134. | DOI | MR | Zbl

L. Ni, A matrix Li−Yau-Hamilton inequality for Kähler-Ricci flow. J. Differ. Geom. 75 (2007) 303–358. | MR | Zbl

L. Ni, Monotonicity and Li−Yau-Hamilton inequalities. Geometric flows. Vol. 12 of Surv. Differ. Geom. Int. Press, Somerville, MA (2008) 251–301. | MR | Zbl

G. Perelmann, The entropy formula for the Ricci flow and its geometric applications. Preprint (2002). | arXiv | Zbl

O.C. Schnürer and K. Smoczyk, Evolution of hypersurfaces in central force fields. J. Reine Angew. Math. 550 (2002) 77–95. | MR | Zbl

R.T. Seeley, Complex powers of an elliptic operator. Singular Integrals Proc. of Sympos. Pure Math., Chicago, Ill., 1966. Amer. Math. Soc., Providence, R.I. (1967) 288–307. | MR | Zbl

C. Villani, Optimal transport. Old and new. Vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (2009). | MR | Zbl

S.T. Yau, Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28 (1975) 201–228. | DOI | MR | Zbl

Cité par Sources :