On coupled systems of Kolmogorov equations with applications to stochastic differential games
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 937-976.

We prove that a family of linear bounded evolution operators (𝐆(t,s)) tsI can be associated, in the space of vector-valued bounded and continuous functions, to a class of systems of elliptic operators 𝒜 with unbounded coefficients defined in I × d (where I is a right-halfline or I = ) all having the same principal part. We establish some continuity and representation properties of (𝐆(t,s)) tsI and a sufficient condition for the evolution operator to be compact in C b ( d ; m ) . We prove also a uniform weighted gradient estimate and some of its more relevant consequence.

DOI : 10.1051/cocv/2016019
Classification : 35K45, 35K58, 47B07, 60H10, 91A15
Mots-clés : Nonautonomous parabolic systems, unbounded coefficients, evolution operators, compactness, gradient estimates, semilinear systems, stochastic games
Addona, Davide 1 ; Angiuli, Luciana 2 ; Lorenzi, Luca 3 ; Tessitore, Gianmario 1

1 Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy.
2 Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy.
3 Dipartimento di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy.
@article{COCV_2017__23_3_937_0,
     author = {Addona, Davide and Angiuli, Luciana and Lorenzi, Luca and Tessitore, Gianmario},
     title = {On coupled systems of {Kolmogorov} equations with applications to stochastic differential games},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {937--976},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016019},
     zbl = {1371.35144},
     mrnumber = {3660455},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016019/}
}
TY  - JOUR
AU  - Addona, Davide
AU  - Angiuli, Luciana
AU  - Lorenzi, Luca
AU  - Tessitore, Gianmario
TI  - On coupled systems of Kolmogorov equations with applications to stochastic differential games
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 937
EP  - 976
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016019/
DO  - 10.1051/cocv/2016019
LA  - en
ID  - COCV_2017__23_3_937_0
ER  - 
%0 Journal Article
%A Addona, Davide
%A Angiuli, Luciana
%A Lorenzi, Luca
%A Tessitore, Gianmario
%T On coupled systems of Kolmogorov equations with applications to stochastic differential games
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 937-976
%V 23
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016019/
%R 10.1051/cocv/2016019
%G en
%F COCV_2017__23_3_937_0
Addona, Davide; Angiuli, Luciana; Lorenzi, Luca; Tessitore, Gianmario. On coupled systems of Kolmogorov equations with applications to stochastic differential games. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 937-976. doi : 10.1051/cocv/2016019. http://archive.numdam.org/articles/10.1051/cocv/2016019/

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variations and free discontinuity problems. Oxford University Press, Oxford (2000). | MR | Zbl

L. Angiuli and L. Lorenzi, Compactness and invariance properties of evolution operators associated to Kolmogorov operators with unbounded coefficients. J. Math. Anal. Appl. 379 (2011) 125–149. | DOI | MR | Zbl

L. Angiuli and L. Lorenzi, On the Dirichlet and Neumann evolution operators in ℝd+. Potential Anal. 41 (2014) 1079–1110. | DOI | MR | Zbl

L. Angiuli and L. Lorenzi, Non autonomous parabolic problems with unbounded coefficients in unbounded domains. Adv. Differ. Eq. 20 (2015) 1067–1118. | MR | Zbl

L. Angiuli, L. Lorenzi and A. Lunardi, Hypercontractivity and asymptotic behaviour in nonautonomous Kolmogorov equations. Commun. Partial Differ. Eq. 38 (2013) 2049–2080. | DOI | MR | Zbl

L. Angiuli, L. Lorenzi and D. Pallara, L p -estimates for parabolic systems with unbounded coefficients coupled at zero and first order. J. Math. Anal. Appl. 444 (2016) 110–135. | DOI | MR | Zbl

S. Bernstein, Sur la généralisation du probléme de Dirichlet, I. Math. Ann. 62 (1906) 253–271. | DOI | JFM | MR

M. Bertoldi and L. Lorenzi, Estimates of the derivatives for parabolic operators with unbounded coefficients. Trans. Amer. Math. Soc. 357 (2005) 2627–2664. | DOI | MR | Zbl

M. Bertoldi and L. Lorenzi, Analytical methods for Markov semigoups. Chapman Hall/CRC Press (2006). | MR | Zbl

A. Bensoussan and J. Frehse, Stochastic games for N players, J. Optim. Theory Appl. 105 (2000) 543–565. | DOI | MR | Zbl

A. Bensoussan and J. Frehse, Regularity results for nonlinear elliptic systems and applications. Vol. 151 of Appl. Math. Sci. Springer-Verlag, Berlin (2002). | MR | Zbl

S. Delmonte and L. Lorenzi, On a class of weakly coupled systems of elliptic operators with unbounded coefficients. Milan J. Math. 79 (2011) 689–727. | DOI | MR | Zbl

A. Friedman, Partial differential equations of parabolic type. Prent. Hall, Englewood Cliffs, N. J. (1964). | MR | Zbl

A. Friedman, Differential games. Vol. 25 of Pure and Applied Mathematics. Wiley-Interscience, New York-London (1971). | MR | Zbl

A. Friedman, Stochastic differential games. J. Differ. Eq. 11 (1972) 79–108. | DOI | MR | Zbl

M. Fuhrman and Y. Hu, Backward stochastic differential equations in infinite dimensions with continuous driver and applications. Appl. Math. Optim. 56 (2007) 265–302. | DOI | MR | Zbl

M. Fuhrman and G. Tessitore, Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and application to optimal control. Ann. Prob. 30 (2002) 1397–1465. | DOI | MR | Zbl

T.H. Gronwall, Note on the derivation with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919) 292–296. | DOI | JFM | MR

S. Hamadène and J.P. Lepeltier, Backward equations, stochastic control and zero-sum stochastic differential games. Stoch. Stoch. Rep. 54 (1995) 221–231. | DOI | MR | Zbl

S. Hamadène and R. Mu, Existence of Nash equilibrium points for Markovian nonzero-sum stochastic differential games with unbounded boefficients. Stochastics 87 (2015) 85–111. | DOI | MR | Zbl

M. Hieber, L. Lorenzi, J. Pruss, A. Rhandi and R. Schnaubelt, Global properties of generalized Ornstein−Uhlenbeck operators in L p ( N , N ) with more than linearly growing coefficients. J. Math. Anal. Appl. 350 (2009) 100–121. | DOI | MR | Zbl

I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus. Springer Verlag, New York (1988). | MR | Zbl

G. Kresin and V.G. Maz’ia, Maximum principles and sharp constants for solutions of elliptic and parabolic systems. Vol. 183 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2012). | MR | Zbl

H. Kunita, Stochastic flows and stochastic differential equations. Cambridge Univ. Press (1997). | MR | Zbl

M. Kunze, L. Lorenzi and A. Lunardi, Nonautonomous Kolmogorov parabolic equations with unbounded coefficients. Trans. Amer. Math. Soc. 362 (2010) 169–198. | DOI | MR | Zbl

K. Kuratowski, Topology I. Academic Press, New York (1966). | MR | Zbl

O.A. Ladyžhenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasilinear equations of parabolic type.  Nauka, Moscow (1967) English transl.: American Mathematical Society, Providence, R.I. (1968). | MR | Zbl

X. Liu and X. Zhang, The weak maximum principle for a class of strongly coupled elliptic differential systems. J. Funct. Anal. 263 (2012) 1862–1886. | DOI | MR | Zbl

L. Lorenzi, Optimal regularity for nonautonomous Kolmogorov equations. Discr. Cont. Dyn. Syst. Series S. 4 (2011) 169–191. | MR | Zbl

A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in N . Stud. Math. 128 (1998) 171–198. | DOI | MR | Zbl

A. Lunardi, Compactness and asymptotic behavior in nonautonomous linear parabolic equations with unbounded coefficients in d , In Parabolic Prolems. The Herbert Amann Festschrift. Vol. 80 of Progress in Nonlinear Differential Equations. Springer, Basel (2011) 447–461. | MR | Zbl

P. Mannucci, Nonzero-sum stochastic differential games with discontinuous feedback. SIAM J. Control Optim. 43 (2004/05) 1222–1233. | DOI | MR | Zbl

G. Metafune, D. Pallara and M. Wacker, Compactness properties of Feller semigroups. Stud. Math. 153 (2002) 179–206. | DOI | MR | Zbl

E. Pardoux and S. Peng, Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic Partial Differential Equations and Their Applications. Vol. 176 of Lect. Notes Control Inf. Sci. Springer, Berlin (1992) 200–217. | MR | Zbl

W. Rudin, Real and complex analysis. McGraw-Hill Book Co., New York-Toronto, Ont.-London (1966). | MR | Zbl

A.C.M. van Rooij and W.H. Schikhof, A second course on real functions. Cambridge University Press (1982). | MR | Zbl

Cité par Sources :