On the Lagrangian structure of reduced dynamics under virtual holonomic constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 913-935.

This paper investigates a class of Lagrangian control systems with n degrees-of-freedom (DOF) and n-1 actuators, assuming that n-1 virtual holonomic constraints have been enforced via feedback, and a basic regularity condition holds. The reduced dynamics of such systems are described by a second-order unforced differential equation. We present necessary and sufficient conditions under which the reduced dynamics are those of a mechanical system with one DOF and, more generally, under which they have a Lagrangian structure. In both cases, we show that typical solutions satisfying the virtual constraints lie in a restricted class which we completely characterize.

DOI : 10.1051/cocv/2016020
Classification : 70Q05, 93C10, 93C15, 49Q99
Mots clés : Underactuated mechanical systems, virtual holonomic constraints, inverse lagrangian problem
Mohammadi, Alireza 1 ; Maggiore, Manfredi 1 ; Consolini, Luca 2

1 Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, ON, M5S 3G4, Canada.
2 Dipartimento di Ingegneria dell’Informazione, via Usberti 181/a, 43124 Parma, Italy.
@article{COCV_2017__23_3_913_0,
     author = {Mohammadi, Alireza and Maggiore, Manfredi and Consolini, Luca},
     title = {On the {Lagrangian} structure of reduced dynamics under virtual holonomic constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {913--935},
     publisher = {EDP-Sciences},
     volume = {23},
     number = {3},
     year = {2017},
     doi = {10.1051/cocv/2016020},
     zbl = {1407.70036},
     mrnumber = {3660454},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016020/}
}
TY  - JOUR
AU  - Mohammadi, Alireza
AU  - Maggiore, Manfredi
AU  - Consolini, Luca
TI  - On the Lagrangian structure of reduced dynamics under virtual holonomic constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2017
SP  - 913
EP  - 935
VL  - 23
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016020/
DO  - 10.1051/cocv/2016020
LA  - en
ID  - COCV_2017__23_3_913_0
ER  - 
%0 Journal Article
%A Mohammadi, Alireza
%A Maggiore, Manfredi
%A Consolini, Luca
%T On the Lagrangian structure of reduced dynamics under virtual holonomic constraints
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2017
%P 913-935
%V 23
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016020/
%R 10.1051/cocv/2016020
%G en
%F COCV_2017__23_3_913_0
Mohammadi, Alireza; Maggiore, Manfredi; Consolini, Luca. On the Lagrangian structure of reduced dynamics under virtual holonomic constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 3, pp. 913-935. doi : 10.1051/cocv/2016020. http://archive.numdam.org/articles/10.1051/cocv/2016020/

I. Anderson and T. Duchamp, On the existence of global variational principles. Am. J. Math. 102 (1980) 781–867. | DOI | MR | Zbl

V.I. Arnold, Mathematical Methods of Classical Mechanics. Vol. 60 of Graduate Texts in Mathematics. Springer (1989). | MR | Zbl

C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Westervelt, C. Canudas-De-Wit and J. Grizzle, Rabbit: A testbed for advanced control theory. IEEE Control Syst. Mag. 23 (2003) 57–79. | DOI

C. Chevallereau, J.W. Grizzle and C.L. Shih, Asymptotically stable walking of a five-link underactuated 3D bipedal robot. IEEE Trans. Robot. 25 (2008) 37–50. | DOI

L. Consolini and M. Maggiore, On the swing-up of the Pendubot using virtual holonomic constrains. In IFAC World Congress (2011) 9290–9295,.

L. Consolini and M. Maggiore, Control of a bicycle using virtual holonomic constraints. Automatica 49 (2013) 2831–2839. | DOI | MR | Zbl

L. Consolini, M. Maggiore, C. Nielsen and M. Tosques, Path following for PVTOL aircraft. Automatica 46 (2010) 585–590. | DOI | MR | Zbl

M. Crampin, On the differential geometry of Euler-Lagrange equations, and the inverse problem of Lagrangian dynamics. J. Phys. A 14 (1981) 2567–2575. | DOI | MR | Zbl

M. Crampin, G.E. Prince and G. Thompson, A geometric version of the Helmholtz conditions in time dependent Lagrangian dynamics. J. Phys. A 17 (1984) 1437–1447. | DOI | MR | Zbl

G. Darboux, Leçons sur la Théorie Générale des Surfaces. Gauthier-Villars, Paris (1894). | JFM

J. Douglas, Solution to the inverse problem of the calculus of variations. Trans. Am. Math. Soc. 50 (1941) 71–129. | DOI | JFM | MR

L. Freidovich, A. Robertsson, A. Shiriaev and R. Johansson, Periodic motions of the pendubot via virtual holonomic constraints: Theory and experiments. Automatica 44 (2008) 785–791. | DOI | MR | Zbl

V. Guillemin and A. Pollack, Differential Topology. Prentice Hall, New Jersey (1974). | MR | Zbl

H. Helmholtz, Über der physikalische Bedeutung des Princips der kleinsten Wirkung. J. Reine Angew. Math. 100 (1887) 137–166. | DOI | JFM | MR

M. Henneaux. Equation of motion, commutation relations and ambiguities in the Lagrangian formalism. Ann. Phys. 140 (1982) 45–64. | DOI | MR | Zbl

A. Isidori, Nonlinear Control Systems. Springer, New York, 3rd edition (1995). | MR

D. Jankuloski, M. Maggiore and L. Consolini, Further results on virtual holonomic constraints. In Proc. of the 4th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Bertinoro, Italy (2012).

D. Krupka, Variational sequences in mechanics. Calc. Var. Partial Differ. Eq. 5 (1997) 557–583. | DOI | MR | Zbl

D. Krupka, Introduction to Global Variational Geometry. Springer (2015). | MR | Zbl

O. Krupková and G.E. Prince, Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations. In edited by D. Krupka and D.J. Saunders. Handbook of Global Analysis. Elsevier (2008) 837–904. | MR | Zbl

J.M. Lee, Introduction to Smooth Manifolds. Springer, 2nd edition (2013). | MR | Zbl

M. Maggiore and L. Consolini, Virtual holonomic constraints for Euler-Lagrange systems. IEEE Trans. Automat. Contr. 58 (2013) 1001–1008,. | DOI | MR | Zbl

E. Martínez, J.F. Cariñena and W. Sarlet, Derivations of differential forms along the tangent bundle projection II. Diff. Geom. Appl. 3 (1993) 1–29. | DOI | MR | Zbl

A. Mayer, Die existenzbedingungen eines kinetischen potentiales. Ber. Ver. Ges. d. Wiss. Leipzig, Math.-Phys. Cl. 48 (1896) 519–529. | JFM

A. Mohammadi, M. Maggiore and L. Consolini, When is a Lagrangian control system with virtual holonomic constraints Lagrangian? In Proc. of the 9th IFAC Symposium on Nonlinear Control Systems (NOLCOS), Toulouse, France (2013) 512–517.

A. Mohammadi, E. Rezapour, M. Maggiore and K.Y. Pettersen, Direction following control of planar snake robots using virtual holonomic constraints. In Proc. of the 53rd Conference on Decision and Control (CDC) (2014) 3801–3808.

A. Mohammadi, E. Rezapour, M. Maggiore and K.Y. Pettersen, Maneuvering control of planar snake robots using virtual holonomic constraints. IEEE Transactions on Control Systems Technology (2015). | DOI

J. Nakanishi, T. Fukuda and D.E. Koditschek, A brachiating robot controller. IEEE Trans. Robot. Automat. 16 (2000) 109–123. | DOI

Y. Pinchover and J. Rubinstein, An Introduction to Partial Differential Equations. Cambridge University Press (2005). | MR | Zbl

F. Plestan, J.W. Grizzle, E.R. Westervelt and G. Abba, Stable walking of a 7-DOF biped robot. IEEE Trans. Robot. and Aut. 19 (2003) 653–668. | DOI

R.M. Santilli, Foundations of Theoretical Mechanics I, The Inverse Problem in Newtonian Mechanics. Springer-Verlag, New York (1978). | MR | Zbl

W. Sarlet, The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics. J. Phys. A 15 (1982) 1503–1517. | DOI | MR | Zbl

D.J. Saunders, Thirty years of the inverse problem of calculus of variations. Rep. Math. Phys. 66 (2010) 43–53. | DOI | MR | Zbl

A. Shiriaev, J.W. Perram and C. Canudas-De-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach. IEEE Trans. Automat. Control. 50 (2005) 1164–1176. | DOI | MR | Zbl

A. Shiriaev, A. Robertsson, J. Perram and A. Sandberg, Periodic motion planning for virtually constrained Euler-Lagrange systems. Syst. Control Lett. 55 (2006) 900–907. | DOI | MR | Zbl

A.S. Shiriaev, L.B. Freidovich and S.V. Gusev, Transverse linearization for controlled mechanical systems with several passive degrees of freedom. IEEE Trans. Automat. Control 55 (2010) 893–906. | DOI | MR | Zbl

N.J. Sonin, About determining maximal and minimal properties of plane curves. Warsawskye Universitetskye Izvestiya 1 (1886) 1–68. In Russian.

F. Takens, A global version of the inverse problem of the calculus of variations. J. Diff. Geom. 14 (1979) 543–562. | MR | Zbl

E. Tonti, Variational formulation of nonlinear differential equations I, II. Bull. Acad. Roy. Belg. Cl. Sci. 55 (1969) 137–165, 262–278. | MR | Zbl

E. Tonti, Inverse problem: Its general solution. In edited by G.M. Rassias and T. M. Rassias. Differential Geometry, Calculus of Variations, and Their Applications. Marcel Dekker, Inc. (1985) 497–510. | MR | Zbl

M.M. Vainberg, Variational Methods in the Theory of Nonlinear Operators. GITL, Moscow (1959). In Russian.

E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, and B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor & Francis, CRC Press (2007).

E.R. Westervelt, J.W. Grizzle, and D.E. Koditschek, Hybrid zero dynamics of planar biped robots. IEEE Transactions on Automatic Control 48 (2003) 42–56. | DOI | MR | Zbl

Cité par Sources :