Lagrangian controllability at low Reynolds number
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1040-1053.

In this paper, we establish a result of Lagrangian controllability for a fluid at low Reynolds number, driven by the stationary Stokes equation. This amounts to the possibility of displacing a part of a fluid from one zone to another by suitably using a boundary control. This relies on a weak variant of the Runge–Walsh’s theorem (on approximation of harmonic functions) concerning the Stokes equation. We give two variants of this result, one of which we believe to be better adapted to numerical simulations.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016032
Classification : 76D07, 76D55, 35Q30, 34H05, 93B05, 35A35
Mots clés : Stokes system, controllability, Lagrangian controllability, Runge theorem
Glass, O. 1 ; Horsin, T. 2

1 CEREMADE, Université Paris-Dauphine & CNRS, PSL, Place du Maréchal de Lattre de Tassigny, 75775 Paris cedex 16, France.
2 Conservatoire National des Arts et Métiers, M2N, Case 2D 5000, 292 rue Saint-Martin, 75003 Paris, France.
@article{COCV_2016__22_4_1040_0,
     author = {Glass, O. and Horsin, T.},
     title = {Lagrangian controllability at low {Reynolds} number},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1040--1053},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016032},
     mrnumber = {3570493},
     zbl = {1388.93020},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016032/}
}
TY  - JOUR
AU  - Glass, O.
AU  - Horsin, T.
TI  - Lagrangian controllability at low Reynolds number
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 1040
EP  - 1053
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016032/
DO  - 10.1051/cocv/2016032
LA  - en
ID  - COCV_2016__22_4_1040_0
ER  - 
%0 Journal Article
%A Glass, O.
%A Horsin, T.
%T Lagrangian controllability at low Reynolds number
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1040-1053
%V 22
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016032/
%R 10.1051/cocv/2016032
%G en
%F COCV_2016__22_4_1040_0
Glass, O.; Horsin, T. Lagrangian controllability at low Reynolds number. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1040-1053. doi : 10.1051/cocv/2016032. http://archive.numdam.org/articles/10.1051/cocv/2016032/

S. Agmon, A. Douglis and L. Nirenberg, Estimate near the boundary for the solutions of elliptic differential equations satisfying general boundary values i. Comm. Pure Appl. Math. 12 (1959) 623–727. | DOI | MR | Zbl

S. Agmon, A. Douglis and L. Nirenberg, Estimate near the boundary for the solutions of elliptic differential equations satisfying general boundary values ii. Comm. Pure Appl. Math. 17 (1964) 35–92. | DOI | MR | Zbl

F. Alouges and L. Giraldi, Enhanced controllability of low reynolds number swimmers in the presence of a wall. Acta Appl. Math. 128 (2013) 153–179. | DOI | MR | Zbl

F. Alouges, A. Desimone and A. Lefebvre, Swimming at low Reynolds number at optimal strokes: An example. J. Nonlin. Sci. 3 (2008) 277–302. | MR | Zbl

J.-B. Biot and F. Savart, Note sur le magnétisme de la pile de volta. Ann. Chim. Phys. (1820) 1222–1223.

P.B. Bochev and M.D. Gunzburger, Least-squares methods for the velocity-pressure-stress formulation of the stokes equations. Comp. Meth. Appl. Mech. Eng. 126 (1995) 267–287. | DOI | MR | Zbl

M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for a Robin coefficient in the two-dimensional Stokes system. Math. Control Relat. Fields 3 (2013) 21–49. | DOI | MR | Zbl

F. Boyer and P. Fabrie, Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. In vol. 52 of SMAI, Mathématiques et Applications. Springer-Verlag, Berlin, Heidelberg (2005). | MR | Zbl

M. Costabel, M. Dauge and S. Nicaise, Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22 (2012) 1250015. | DOI | MR | Zbl

D.B.A. Epstein, Curves on 2-manifolds and isotopies. Acta Math. 115 (1966) 83–107. | DOI | MR | Zbl

C. Fabre and G. Lebeau, Prolongement unique des solutions de l’equation de stokes. Commun. Partial Differ. Eq. 21 (1996) 573–596. | DOI | MR | Zbl

S.J. Gardiner, Harmonic approximation. Vol. 221 of London Mathematical Society, Lecture Note Series. Cambridge university press (1995). | MR | Zbl

O. Glass and T. Horsin, Approximate lagrangian controllability for the 2-d Euler equations. Application to the control of the shape of vortex patch. J. Math. Pures Appl. 93 (2010) 61–90. | DOI | MR | Zbl

O. Glass and T. Horsin, Prescribing the motion of a set of particles in a 3d perfect fluid. Soumis (2011). | MR | Zbl

P.W. Gross and P.R. Kotiuga, Electromagnetic theory and computation: a topological approach. Vol. 48 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge (2004). | MR | Zbl

B. Guo and C. Schwab, Analytic regularity of stokes flow on polygonal domains in countably weighted sobolev spaces. J. Comput. Appl. Math. 190 (2006) 487–519. | DOI | MR | Zbl

E. Guyon, J.-P. Hulin and L. Petit, Hydrodynamique physique, 3ème édition. Savoirs actuels. EDP Sciences/CNRS Éditions, 3rd edition (2012).

S.G. Krantz and H.R. Parks, A Primer of Real Analytic Functions. Birkhäuser, Basel, Boston, Berlin (1992). | MR | Zbl

A.B. Krygin, Extension of diffeomorphisms that preserve volume. Funkcional. Anal. i Priložen. 5-2 (1971) 72–76. | MR | Zbl

J. Lohéac and A. Munnier, Controllability of 3D low Reynolds number swimmers. ESAIM COCV 20 (2014) 236–268. | DOI | Numdam | MR | Zbl

C.B. Morrey, Multiple integrals in the calculus of variations. Classics in Mathematics. Reprint of the 1966 edition [MR0202511]. Springer-Verlag, Berlin (2008). | MR | Zbl

W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York, 2nd edition (1974). | MR | Zbl

J. San Martin, T. Takahashi and M. Tucsnak, Théorie du mouvement non permanent des eaux, avec applications aux crues des rivières et à l’introduction des marées dans leur lit. Quart. Appl. Math. 65 (2007) 405–424. | MR | Zbl

R. Temam, Navier–Stokes Equations: Theory and numerical analysis. North-Holland Publications, North-Holland (1979). | Zbl

H. Whitney, The imbedding of manifolds in families of analytic manifolds. Ann. Math. 37-4 (1936) 865–878. | DOI | JFM | MR | Zbl

Cité par Sources :