In this paper, we establish a result of Lagrangian controllability for a fluid at low Reynolds number, driven by the stationary Stokes equation. This amounts to the possibility of displacing a part of a fluid from one zone to another by suitably using a boundary control. This relies on a weak variant of the Runge–Walsh’s theorem (on approximation of harmonic functions) concerning the Stokes equation. We give two variants of this result, one of which we believe to be better adapted to numerical simulations.
Accepté le :
DOI : 10.1051/cocv/2016032
Mots-clés : Stokes system, controllability, Lagrangian controllability, Runge theorem
@article{COCV_2016__22_4_1040_0, author = {Glass, O. and Horsin, T.}, title = {Lagrangian controllability at low {Reynolds} number}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1040--1053}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016032}, mrnumber = {3570493}, zbl = {1388.93020}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2016032/} }
TY - JOUR AU - Glass, O. AU - Horsin, T. TI - Lagrangian controllability at low Reynolds number JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1040 EP - 1053 VL - 22 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2016032/ DO - 10.1051/cocv/2016032 LA - en ID - COCV_2016__22_4_1040_0 ER -
%0 Journal Article %A Glass, O. %A Horsin, T. %T Lagrangian controllability at low Reynolds number %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1040-1053 %V 22 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2016032/ %R 10.1051/cocv/2016032 %G en %F COCV_2016__22_4_1040_0
Glass, O.; Horsin, T. Lagrangian controllability at low Reynolds number. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1040-1053. doi : 10.1051/cocv/2016032. http://archive.numdam.org/articles/10.1051/cocv/2016032/
Estimate near the boundary for the solutions of elliptic differential equations satisfying general boundary values i. Comm. Pure Appl. Math. 12 (1959) 623–727. | DOI | MR | Zbl
, and ,Estimate near the boundary for the solutions of elliptic differential equations satisfying general boundary values ii. Comm. Pure Appl. Math. 17 (1964) 35–92. | DOI | MR | Zbl
, and ,Enhanced controllability of low reynolds number swimmers in the presence of a wall. Acta Appl. Math. 128 (2013) 153–179. | DOI | MR | Zbl
and ,Swimming at low Reynolds number at optimal strokes: An example. J. Nonlin. Sci. 3 (2008) 277–302. | MR | Zbl
, and ,Note sur le magnétisme de la pile de volta. Ann. Chim. Phys. (1820) 1222–1223.
and ,Least-squares methods for the velocity-pressure-stress formulation of the stokes equations. Comp. Meth. Appl. Mech. Eng. 126 (1995) 267–287. | DOI | MR | Zbl
and ,Stability estimates for a Robin coefficient in the two-dimensional Stokes system. Math. Control Relat. Fields 3 (2013) 21–49. | DOI | MR | Zbl
, and ,F. Boyer and P. Fabrie, Eléments d’analyse pour l’étude de quelques modèles d’écoulements de fluides visqueux incompressibles. In vol. 52 of SMAI, Mathématiques et Applications. Springer-Verlag, Berlin, Heidelberg (2005). | MR | Zbl
Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22 (2012) 1250015. | DOI | MR | Zbl
, and ,Curves on -manifolds and isotopies. Acta Math. 115 (1966) 83–107. | DOI | MR | Zbl
,Prolongement unique des solutions de l’equation de stokes. Commun. Partial Differ. Eq. 21 (1996) 573–596. | DOI | MR | Zbl
and ,S.J. Gardiner, Harmonic approximation. Vol. 221 of London Mathematical Society, Lecture Note Series. Cambridge university press (1995). | MR | Zbl
Approximate lagrangian controllability for the 2-d Euler equations. Application to the control of the shape of vortex patch. J. Math. Pures Appl. 93 (2010) 61–90. | DOI | MR | Zbl
and ,O. Glass and T. Horsin, Prescribing the motion of a set of particles in a 3d perfect fluid. Soumis (2011). | MR | Zbl
P.W. Gross and P.R. Kotiuga, Electromagnetic theory and computation: a topological approach. Vol. 48 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge (2004). | MR | Zbl
Analytic regularity of stokes flow on polygonal domains in countably weighted sobolev spaces. J. Comput. Appl. Math. 190 (2006) 487–519. | DOI | MR | Zbl
and ,E. Guyon, J.-P. Hulin and L. Petit, Hydrodynamique physique, 3ème édition. Savoirs actuels. EDP Sciences/CNRS Éditions, 3rd edition (2012).
S.G. Krantz and H.R. Parks, A Primer of Real Analytic Functions. Birkhäuser, Basel, Boston, Berlin (1992). | MR | Zbl
Extension of diffeomorphisms that preserve volume. Funkcional. Anal. i Priložen. 5-2 (1971) 72–76. | MR | Zbl
,Controllability of 3D low Reynolds number swimmers. ESAIM COCV 20 (2014) 236–268. | DOI | Numdam | MR | Zbl
and ,C.B. Morrey, Multiple integrals in the calculus of variations. Classics in Mathematics. Reprint of the 1966 edition [MR0202511]. Springer-Verlag, Berlin (2008). | MR | Zbl
W. Rudin, Real and complex analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York, 2nd edition (1974). | MR | Zbl
J. San Martin, Théorie du mouvement non permanent des eaux, avec applications aux crues des rivières et à l’introduction des marées dans leur lit. Quart. Appl. Math. 65 (2007) 405–424. | MR | Zbl
and ,R. Temam, Navier–Stokes Equations: Theory and numerical analysis. North-Holland Publications, North-Holland (1979). | Zbl
The imbedding of manifolds in families of analytic manifolds. Ann. Math. 37-4 (1936) 865–878. | DOI | JFM | MR | Zbl
,Cité par Sources :