Controllability of 3D low Reynolds number swimmers
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 236-268.

In this article, we consider a swimmer (i.e. a self-deformable body) immersed in a fluid, the flow of which is governed by the stationary Stokes equations. This model is relevant for studying the locomotion of microorganisms or micro robots for which the inertia effects can be neglected. Our first main contribution is to prove that any such microswimmer has the ability to track, by performing a sequence of shape changes, any given trajectory in the fluid. We show that, in addition, this can be done by means of arbitrarily small body deformations that can be superimposed to any preassigned sequence of macro shape changes. Our second contribution is to prove that, when no macro deformations are prescribed, tracking is generically possible by means of shape changes obtained as a suitable combination of only four elementary deformations. Eventually, still considering finite dimensional deformations, we state results about the existence of optimal swimming strategies on short time intervals, for a wide class of cost functionals.

DOI : 10.1051/cocv/2013063
Classification : 74F10, 70S05, 76B03, 93B27
Mots-clés : locomotion, biomechanics, stokes fluid, geometric control theory
@article{COCV_2014__20_1_236_0,
     author = {Loh\'eac, J\'er\^ome and Munnier, Alexandre},
     title = {Controllability of {3D} low {Reynolds} number swimmers},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {236--268},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {1},
     year = {2014},
     doi = {10.1051/cocv/2013063},
     mrnumber = {3182699},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2013063/}
}
TY  - JOUR
AU  - Lohéac, Jérôme
AU  - Munnier, Alexandre
TI  - Controllability of 3D low Reynolds number swimmers
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 236
EP  - 268
VL  - 20
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2013063/
DO  - 10.1051/cocv/2013063
LA  - en
ID  - COCV_2014__20_1_236_0
ER  - 
%0 Journal Article
%A Lohéac, Jérôme
%A Munnier, Alexandre
%T Controllability of 3D low Reynolds number swimmers
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 236-268
%V 20
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2013063/
%R 10.1051/cocv/2013063
%G en
%F COCV_2014__20_1_236_0
Lohéac, Jérôme; Munnier, Alexandre. Controllability of 3D low Reynolds number swimmers. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 1, pp. 236-268. doi : 10.1051/cocv/2013063. https://www.numdam.org/articles/10.1051/cocv/2013063/

[1] A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, vol. 87 of Encyclopaedia Math. Sci. Springer-Verlag, Berlin (2004). | MR | Zbl

[2] F. Alouges, A. Desimone and A. Lefebvre, Optimal strokes for low Reynolds number swimmers: an example. J. Nonlinear Sci. 18 (2008) 277-302. | MR | Zbl

[3] H. Brenner. The stokes resistance of a slightly deformed sphere. Chem. Engrg. Sci. 19 (1964) 519-539.

[4] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam (1973). | MR | Zbl

[5] T. Chambrion and A. Munnier, Locomotion and control of a self-propelled shape-changing body in a fluid. J. Nonlinear Sci. 21 (2011) 325-385. | MR | Zbl

[6] T. Chambrion and A. Munnier, Generic controllability of 3d swimmers in a perfect fluid. SIAM J. Control Optim. 50 (2012) 2814-2835. | MR

[7] S. Childress, Mechanics of swimming and flying, vol. 2 of Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge (1981). | MR | Zbl

[8] V. Girault and A. Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions. Arch. Rational Mech. Anal. 114 (1991) 313-333. | MR | Zbl

[9] J. Happel and H. Brenner, Low Reynolds number hydrodynamics with special applications to particulate media. Prentice-Hall Inc., Englewood Cliffs, N.J. (1965). | MR | Zbl

[10] H. Lamb, Hydrodynamics. Cambridge Mathematical Library. 6th edition. Cambridge University Press, Cambridge, (1993). | JFM | MR | Zbl

[11] J. Lighthill, Mathematical biofluiddynamics. Society for Industrial and Applied Mathematics. Philadelphia, Pa. (1975). | MR | Zbl

[12] M.J. Lighthill, On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5 (1952) 109-118. | MR | Zbl

[13] G. Maso, A. Desimone and M. Morandotti, An existence and uniqueness result for the motion of self-propelled microswimmers. SIAM J. Math. Anal. 43 (2011) 1345-1368. | MR

[14] E.M. Purcell, Life at low reynolds number. Amer. J. Phys. 45 (1977) 3-11.

[15] T. Roubíček, Nonlinear partial differential equations with applications, vol. 153 of Internat. Ser. Numer. Math. Birkhäuser Verlag, Basel (2005). | Zbl

[16] A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number. J. Fluid Mech. 198 (1989) 557-585. | MR | Zbl

[17] J. Simon, Domain variation for drag in stokes flow, in vol. 159 of Control Theory of Distributed Parameter Systems and Applications, Lecture Notes in Control and Information Sciences, edited by X. Li and J. Yong. Springer Berlin/Heidelberg (1991) 28-42. | MR | Zbl

[18] G. Taylor, Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond., Ser. A 209 (1951) 447-461. | MR | Zbl

[19] E.F. Whittlesey, Analytic functions in Banach spaces. Proc. Amer. Math. Soc. 16 (1965) 1077-1083. | MR | Zbl

  • Moreau, Clément Controllability and Optimal Control of Microswimmers: Theory and Applications, Journal of the Physical Society of Japan, Volume 92 (2023) no. 12 | DOI:10.7566/jpsj.92.121005
  • Marchello, Roberto; Morandotti, Marco; Shum, Henry; Zoppello, Marta The N-Link Swimmer in Three Dimensions: Controllability and Optimality Results, Acta Applicandae Mathematicae, Volume 178 (2022) no. 1 | DOI:10.1007/s10440-022-00480-3
  • Kolumbán, József J. Remote trajectory tracking of a rigid body in an incompressible fluid at low Reynolds number, Comptes Rendus. Mathématique, Volume 360 (2022) no. G10, p. 1135 | DOI:10.5802/crmath.374
  • Alouges, François; Lefebvre-Lepot, Aline; Weder, Philipp Optimal strokes for the 4-sphere swimmer at low Reynolds number in the regime of small deformations, MathematicS In Action, Volume 11 (2022) no. 1, p. 167 | DOI:10.5802/msia.23
  • Moreau, Clément; Ishimoto, Kenta Driving a Microswimmer with Wall-Induced Flow, Micromachines, Volume 12 (2021) no. 9, p. 1025 | DOI:10.3390/mi12091025
  • Glass, Olivier; Kolumbán, József J.; Sueur, Franck Remote trajectory tracking of rigid bodies immersed in a two-dimensional perfect incompressible fluid, Pure and Applied Analysis, Volume 3 (2021) no. 4, p. 613 | DOI:10.2140/paa.2021.3.613
  • Moreau, Clément; Ishimoto, Kenta; Gaffney, Eamonn A.; Walker, Benjamin J. Control and controllability of microswimmers by a shearing flow, Royal Society Open Science, Volume 8 (2021) no. 8, p. 211141 | DOI:10.1098/rsos.211141
  • Glass, Olivier; Kolumbán, József J.; Sueur, Franck External boundary control of the motion of a rigid body immersed in a perfect two-dimensional fluid, Analysis PDE, Volume 13 (2020) no. 3, p. 651 | DOI:10.2140/apde.2020.13.651
  • Giraldi, Laetitia; Jean, Frédéric Periodical Body Deformations are Optimal Strategies for Locomotion, SIAM Journal on Control and Optimization, Volume 58 (2020) no. 3, p. 1700 | DOI:10.1137/19m1280120
  • Wang, Qixuan Optimal Strokes of Low Reynolds Number Linked-Sphere Swimmers, Applied Sciences, Volume 9 (2019) no. 19, p. 4023 | DOI:10.3390/app9194023
  • Giraldi, Laetitia; Pomet, Jean-Baptiste Local Controllability of the Two-Link Magneto-Elastic Micro-Swimmer, IEEE Transactions on Automatic Control, Volume 62 (2017) no. 5, p. 2512 | DOI:10.1109/tac.2016.2600158
  • Glass, O.; Horsin, T. Lagrangian controllability at low Reynolds number, ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, p. 1040 | DOI:10.1051/cocv/2016032
  • Martín, Jorge San; Takahashi, Takéo; Tucsnak, Marius An optimal control approach to ciliary locomotion, Mathematical Control and Related Fields, Volume 6 (2016) no. 2, p. 293 | DOI:10.3934/mcrf.2016005
  • Gérard-Varet, David; Giraldi, Laetitia Rough wall effect on micro-swimmers, ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 3, p. 757 | DOI:10.1051/cocv/2014046

Cité par 14 documents. Sources : Crossref