Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1078-1096.

This paper introduces an explicit output-feedback boundary feedback law that stabilizes an unstable linear constant-coefficient reaction-diffusion equation on an n-ball (which in 2-D reduces to a disk and in 3-D reduces to a sphere) using only measurements from the boundary. The backstepping method is used to design both the control law and a boundary observer. To apply backstepping the system is reduced to an infinite sequence of 1-D systems using spherical harmonics. Well-posedness and stability are proved in the L 2 and H 1 spaces. The resulting control and output injection gain kernels are the product of the backstepping kernel used in control of one-dimensional reaction-diffusion equations and a function closely related to the Poisson kernel in the n-ball.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016033
Classification : 35K57, 93D20, 93D30, 33C55
Mots-clés : Infinite-dimensional backstepping, boundary control, boundary observer, reaction-diffusion system, spherical harmonics
Vazquez, Rafael 1 ; Krstic, Miroslav 2

1 Department of Aerospace Engineering, Universidad de Sevilla, Camino de los Descubrimiento s.n., 41092 Sevilla, Spain.
2 Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411, USA.
@article{COCV_2016__22_4_1078_0,
     author = {Vazquez, Rafael and Krstic, Miroslav},
     title = {Explicit output-feedback boundary control of reaction-diffusion {PDEs} on arbitrary-dimensional balls},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1078--1096},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016033},
     mrnumber = {3570495},
     zbl = {1358.35058},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016033/}
}
TY  - JOUR
AU  - Vazquez, Rafael
AU  - Krstic, Miroslav
TI  - Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 1078
EP  - 1096
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016033/
DO  - 10.1051/cocv/2016033
LA  - en
ID  - COCV_2016__22_4_1078_0
ER  - 
%0 Journal Article
%A Vazquez, Rafael
%A Krstic, Miroslav
%T Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1078-1096
%V 22
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016033/
%R 10.1051/cocv/2016033
%G en
%F COCV_2016__22_4_1078_0
Vazquez, Rafael; Krstic, Miroslav. Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1078-1096. doi : 10.1051/cocv/2016033. http://archive.numdam.org/articles/10.1051/cocv/2016033/

M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, 9th edition. Dover (1965). | MR

K.Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer (2012). | MR | Zbl

V. Barbu, Boundary Stabilization of Equilibrium Solutions to Parabolic Equations. IEEE Trans. Automat. Control 58 (2013) 2416–2420. | DOI | MR | Zbl

H. Brezis, Functional analysis, Sobolev spaces and Partial Differential Equations. Springer (2011). | MR | Zbl

J.-M. Coron, R. Vazquez, M. Krstic and G. Bastin, Local Exponential H 2 Stabilization of a 2×2 Quasilinear Hyperbolic System using Backstepping. SIAM J. Control Optim. 51 (2013) 2005–2035. | DOI | MR | Zbl

F. Bribiesca Argomedo, C. Prieur, E. Witrant and S. Bremond, A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients. IEEE Trans. Automat. Control 58 (2013) 290–303. | DOI | MR | Zbl

F. Di Meglio, R. Vazquez and M. Krstic, Stabilization of a system of n+1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control 58 (2013) 3097–3111. | DOI | MR | Zbl

L.C. Evans, Partial Differential Equations. AMS, Providence, Rhode Island (1998). | Zbl

M. Krstic, Delay Compensation for nonlinear, Adaptive, and PDE Systems. Birkhauser (2009). | MR | Zbl

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs. SIAM (2008). | MR | Zbl

M. Krstic and A. Smyshlyaev, Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Contr. Lett. 57 (2008) 750–758. | DOI | MR | Zbl

T. Meurer, Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs. Springer (2013). | MR | Zbl

T. Meurer and M. Krstic, Finite-time multi-agent deployment: A nonlinear PDE motion planning approach. Automatica 47 (2011) 2534–2542. | DOI | MR | Zbl

S.J. Moura, N.A. Chaturvedi and M. Krstic, PDE estimation techniques for advanced battery management systems – Part I: SOC estimation. Proc. of the 2012 American Control Conference (2012).

J. Qi, R. Vazquez and M. Krstic, Multi-Agent Deployment in 3-D via PDE Control. IEEE Trans. Automat. Control 60 (2015) 891–906. | DOI | MR | Zbl

A. Smyshlyaev and M. Krstic, Adaptive Control of Parabolic PDEs. Princeton University Press (2010). | MR | Zbl

A. Smyshlyaev, E. Cerpa and M. Krstic, Boundary stabilization of a 1-D wave equation with in-domain antidamping. SIAM J. Control Optim. 48 (2010) 4014–4031. | DOI | MR | Zbl

R. Triggiani, “Boundary feedback stabilization of parabolic equations. Appl. Math. Optim. 6 (1980) 201–220. | DOI | MR | Zbl

R. Vazquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic Channel Flow. Birkhauser (2008). | MR | Zbl

R. Vazquez and M. Krstic, Control of 1-D parabolic PDEs with Volterra nonlinearities – Part I: Design. Automatica 44 (2008) 2778–2790. | DOI | MR | Zbl

R. Vazquez and M. Krstic, Boundary observer for output-feedback stabilization of thermal convection loop. IEEE Trans. Control Syst. Technol. 18 (2010) 789–797. | DOI

R. Vazquez and M. Krstic, Explicit boundary control of a reaction-diffusion equation on a disk. Proc. of the 2014 IFAC World Congress (2014). | MR

R. Vazquez and M. Krstic, Explicit Boundary Control of Reaction-Diffusion PDEs on Arbitrary-Dimensional Balls. Proc. of the 2015 European Control Conference (2015). | Numdam | MR

R. Vazquez, E. Trelat and J.-M. Coron, Control for fast and stable laminar-to-high-Reynolds-numbers transfer in a 2D navier−Stokes channel flow. Discretes Contin. Dyn. Syst. Ser. B 10 (2008) 925–956. | MR | Zbl

Cité par Sources :