This paper introduces an explicit output-feedback boundary feedback law that stabilizes an unstable linear constant-coefficient reaction-diffusion equation on an -ball (which in 2-D reduces to a disk and in 3-D reduces to a sphere) using only measurements from the boundary. The backstepping method is used to design both the control law and a boundary observer. To apply backstepping the system is reduced to an infinite sequence of 1-D systems using spherical harmonics. Well-posedness and stability are proved in the and spaces. The resulting control and output injection gain kernels are the product of the backstepping kernel used in control of one-dimensional reaction-diffusion equations and a function closely related to the Poisson kernel in the -ball.
Accepté le :
DOI : 10.1051/cocv/2016033
Mots-clés : Infinite-dimensional backstepping, boundary control, boundary observer, reaction-diffusion system, spherical harmonics
@article{COCV_2016__22_4_1078_0, author = {Vazquez, Rafael and Krstic, Miroslav}, title = {Explicit output-feedback boundary control of reaction-diffusion {PDEs} on arbitrary-dimensional balls}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1078--1096}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016033}, mrnumber = {3570495}, zbl = {1358.35058}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2016033/} }
TY - JOUR AU - Vazquez, Rafael AU - Krstic, Miroslav TI - Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1078 EP - 1096 VL - 22 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2016033/ DO - 10.1051/cocv/2016033 LA - en ID - COCV_2016__22_4_1078_0 ER -
%0 Journal Article %A Vazquez, Rafael %A Krstic, Miroslav %T Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1078-1096 %V 22 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2016033/ %R 10.1051/cocv/2016033 %G en %F COCV_2016__22_4_1078_0
Vazquez, Rafael; Krstic, Miroslav. Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1078-1096. doi : 10.1051/cocv/2016033. http://archive.numdam.org/articles/10.1051/cocv/2016033/
M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, 9th edition. Dover (1965). | MR
K.Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer (2012). | MR | Zbl
Boundary Stabilization of Equilibrium Solutions to Parabolic Equations. IEEE Trans. Automat. Control 58 (2013) 2416–2420. | DOI | MR | Zbl
,H. Brezis, Functional analysis, Sobolev spaces and Partial Differential Equations. Springer (2011). | MR | Zbl
Local Exponential Stabilization of a Quasilinear Hyperbolic System using Backstepping. SIAM J. Control Optim. 51 (2013) 2005–2035. | DOI | MR | Zbl
, , and ,F. Bribiesca Argomedo, A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients. IEEE Trans. Automat. Control 58 (2013) 290–303. | DOI | MR | Zbl
, and ,Stabilization of a system of n+1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control 58 (2013) 3097–3111. | DOI | MR | Zbl
, and ,L.C. Evans, Partial Differential Equations. AMS, Providence, Rhode Island (1998). | Zbl
M. Krstic, Delay Compensation for nonlinear, Adaptive, and PDE Systems. Birkhauser (2009). | MR | Zbl
M. Krstic and A. Smyshlyaev, Boundary Control of PDEs. SIAM (2008). | MR | Zbl
Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Contr. Lett. 57 (2008) 750–758. | DOI | MR | Zbl
and ,T. Meurer, Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs. Springer (2013). | MR | Zbl
Finite-time multi-agent deployment: A nonlinear PDE motion planning approach. Automatica 47 (2011) 2534–2542. | DOI | MR | Zbl
and ,S.J. Moura, N.A. Chaturvedi and M. Krstic, PDE estimation techniques for advanced battery management systems – Part I: SOC estimation. Proc. of the 2012 American Control Conference (2012).
Multi-Agent Deployment in 3-D via PDE Control. IEEE Trans. Automat. Control 60 (2015) 891–906. | DOI | MR | Zbl
, and ,A. Smyshlyaev and M. Krstic, Adaptive Control of Parabolic PDEs. Princeton University Press (2010). | MR | Zbl
Boundary stabilization of a 1-D wave equation with in-domain antidamping. SIAM J. Control Optim. 48 (2010) 4014–4031. | DOI | MR | Zbl
, and ,“Boundary feedback stabilization of parabolic equations. Appl. Math. Optim. 6 (1980) 201–220. | DOI | MR | Zbl
,R. Vazquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic Channel Flow. Birkhauser (2008). | MR | Zbl
Control of 1-D parabolic PDEs with Volterra nonlinearities – Part I: Design. Automatica 44 (2008) 2778–2790. | DOI | MR | Zbl
and ,Boundary observer for output-feedback stabilization of thermal convection loop. IEEE Trans. Control Syst. Technol. 18 (2010) 789–797. | DOI
and ,R. Vazquez and M. Krstic, Explicit boundary control of a reaction-diffusion equation on a disk. Proc. of the 2014 IFAC World Congress (2014). | MR
R. Vazquez and M. Krstic, Explicit Boundary Control of Reaction-Diffusion PDEs on Arbitrary-Dimensional Balls. Proc. of the 2015 European Control Conference (2015). | Numdam | MR
Control for fast and stable laminar-to-high-Reynolds-numbers transfer in a 2D navier−Stokes channel flow. Discretes Contin. Dyn. Syst. Ser. B 10 (2008) 925–956. | MR | Zbl
, and ,Cité par Sources :