Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1078-1096.

This paper introduces an explicit output-feedback boundary feedback law that stabilizes an unstable linear constant-coefficient reaction-diffusion equation on an n-ball (which in 2-D reduces to a disk and in 3-D reduces to a sphere) using only measurements from the boundary. The backstepping method is used to design both the control law and a boundary observer. To apply backstepping the system is reduced to an infinite sequence of 1-D systems using spherical harmonics. Well-posedness and stability are proved in the L2 and H1 spaces. The resulting control and output injection gain kernels are the product of the backstepping kernel used in control of one-dimensional reaction-diffusion equations and a function closely related to the Poisson kernel in the n-ball.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016033
Classification : 35K57, 93D20, 93D30, 33C55
Mots-clés : Infinite-dimensional backstepping, boundary control, boundary observer, reaction-diffusion system, spherical harmonics
Vazquez, Rafael 1 ; Krstic, Miroslav 2

1 Department of Aerospace Engineering, Universidad de Sevilla, Camino de los Descubrimiento s.n., 41092 Sevilla, Spain.
2 Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411, USA.
@article{COCV_2016__22_4_1078_0,
     author = {Vazquez, Rafael and Krstic, Miroslav},
     title = {Explicit output-feedback boundary control of reaction-diffusion {PDEs} on arbitrary-dimensional balls},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1078--1096},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016033},
     mrnumber = {3570495},
     zbl = {1358.35058},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/cocv/2016033/}
}
TY  - JOUR
AU  - Vazquez, Rafael
AU  - Krstic, Miroslav
TI  - Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 1078
EP  - 1096
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/cocv/2016033/
DO  - 10.1051/cocv/2016033
LA  - en
ID  - COCV_2016__22_4_1078_0
ER  - 
%0 Journal Article
%A Vazquez, Rafael
%A Krstic, Miroslav
%T Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1078-1096
%V 22
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/cocv/2016033/
%R 10.1051/cocv/2016033
%G en
%F COCV_2016__22_4_1078_0
Vazquez, Rafael; Krstic, Miroslav. Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1078-1096. doi : 10.1051/cocv/2016033. https://www.numdam.org/articles/10.1051/cocv/2016033/

M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, 9th edition. Dover (1965). | MR

K.Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer (2012). | MR | Zbl

V. Barbu, Boundary Stabilization of Equilibrium Solutions to Parabolic Equations. IEEE Trans. Automat. Control 58 (2013) 2416–2420. | DOI | MR | Zbl

H. Brezis, Functional analysis, Sobolev spaces and Partial Differential Equations. Springer (2011). | MR | Zbl

J.-M. Coron, R. Vazquez, M. Krstic and G. Bastin, Local Exponential H2 Stabilization of a 2×2 Quasilinear Hyperbolic System using Backstepping. SIAM J. Control Optim. 51 (2013) 2005–2035. | DOI | MR | Zbl

F. Bribiesca Argomedo, C. Prieur, E. Witrant and S. Bremond, A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients. IEEE Trans. Automat. Control 58 (2013) 290–303. | DOI | MR | Zbl

F. Di Meglio, R. Vazquez and M. Krstic, Stabilization of a system of n+1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control 58 (2013) 3097–3111. | DOI | MR | Zbl

L.C. Evans, Partial Differential Equations. AMS, Providence, Rhode Island (1998). | Zbl

M. Krstic, Delay Compensation for nonlinear, Adaptive, and PDE Systems. Birkhauser (2009). | MR | Zbl

M. Krstic and A. Smyshlyaev, Boundary Control of PDEs. SIAM (2008). | MR | Zbl

M. Krstic and A. Smyshlyaev, Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Contr. Lett. 57 (2008) 750–758. | DOI | MR | Zbl

T. Meurer, Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs. Springer (2013). | MR | Zbl

T. Meurer and M. Krstic, Finite-time multi-agent deployment: A nonlinear PDE motion planning approach. Automatica 47 (2011) 2534–2542. | DOI | MR | Zbl

S.J. Moura, N.A. Chaturvedi and M. Krstic, PDE estimation techniques for advanced battery management systems – Part I: SOC estimation. Proc. of the 2012 American Control Conference (2012).

J. Qi, R. Vazquez and M. Krstic, Multi-Agent Deployment in 3-D via PDE Control. IEEE Trans. Automat. Control 60 (2015) 891–906. | DOI | MR | Zbl

A. Smyshlyaev and M. Krstic, Adaptive Control of Parabolic PDEs. Princeton University Press (2010). | MR | Zbl

A. Smyshlyaev, E. Cerpa and M. Krstic, Boundary stabilization of a 1-D wave equation with in-domain antidamping. SIAM J. Control Optim. 48 (2010) 4014–4031. | DOI | MR | Zbl

R. Triggiani, “Boundary feedback stabilization of parabolic equations. Appl. Math. Optim. 6 (1980) 201–220. | DOI | MR | Zbl

R. Vazquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic Channel Flow. Birkhauser (2008). | MR | Zbl

R. Vazquez and M. Krstic, Control of 1-D parabolic PDEs with Volterra nonlinearities – Part I: Design. Automatica 44 (2008) 2778–2790. | DOI | MR | Zbl

R. Vazquez and M. Krstic, Boundary observer for output-feedback stabilization of thermal convection loop. IEEE Trans. Control Syst. Technol. 18 (2010) 789–797. | DOI

R. Vazquez and M. Krstic, Explicit boundary control of a reaction-diffusion equation on a disk. Proc. of the 2014 IFAC World Congress (2014). | MR

R. Vazquez and M. Krstic, Explicit Boundary Control of Reaction-Diffusion PDEs on Arbitrary-Dimensional Balls. Proc. of the 2015 European Control Conference (2015). | Numdam | MR

R. Vazquez, E. Trelat and J.-M. Coron, Control for fast and stable laminar-to-high-Reynolds-numbers transfer in a 2D navier−Stokes channel flow. Discretes Contin. Dyn. Syst. Ser. B 10 (2008) 925–956. | MR | Zbl

  • Vazquez, Rafael; Krstic, Miroslav, 2024 European Control Conference (ECC) (2024), p. 354 | DOI:10.23919/ecc64448.2024.10590793
  • Wang, Pengfei; Fridman, Emilia, 2024 IEEE 63rd Conference on Decision and Control (CDC) (2024), p. 3428 | DOI:10.1109/cdc56724.2024.10886417
  • Wang, Pengfei; Fridman, Emilia Delayed finite-dimensional observer-based control of 2D linear parabolic PDEs, Automatica, Volume 164 (2024), p. 111607 | DOI:10.1016/j.automatica.2024.111607
  • Wang, Shanshan; Diagne, Mamadou; Qi, Jie Delay-adaptive compensation for 3-D formation control of leader-actuated multi-agent systems, Automatica, Volume 164 (2024), p. 111645 | DOI:10.1016/j.automatica.2024.111645
  • Krstic, Miroslav; Bhan, Luke; Shi, Yuanyuan Neural operators of backstepping controller and observer gain functions for reaction–diffusion PDEs, Automatica, Volume 164 (2024), p. 111649 | DOI:10.1016/j.automatica.2024.111649
  • Vazquez, Rafael; Chen, Guangwei; Qiao, Junfei; Krstic, Miroslav, 2023 62nd IEEE Conference on Decision and Control (CDC) (2023), p. 8162 | DOI:10.1109/cdc49753.2023.10384080
  • Guan, Dandan; Chen, Yanmei; Qi, Jie; Du, Linglong Bilateral boundary control of an input delayed 2-D reaction–diffusion equation, Automatica, Volume 157 (2023), p. 111242 | DOI:10.1016/j.automatica.2023.111242
  • Shi, Yuanyuan; Li, Zongyi; Yu, Huan; Steeves, Drew; Anandkumar, Anima; Krstic, Miroslav, 2022 IEEE 61st Conference on Decision and Control (CDC) (2022), p. 5423 | DOI:10.1109/cdc51059.2022.9992759
  • Koga, Shumon; Krstic, Miroslav Control of the Stefan System and Applications: A Tutorial, Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 (2022) no. 1, p. 547 | DOI:10.1146/annurev-control-042920-014825
  • Cai, Rui‐Yang; Zhou, Hua‐Cheng; Fan, Xue‐Ru; Kou, Chun‐Hai Boundary output feedback stabilization for spacial multi‐dimensional coupled fractional reaction–diffusion systems, Asian Journal of Control, Volume 24 (2022) no. 5, p. 2751 | DOI:10.1002/asjc.2636
  • Guan, Dandan; Qi, Jie Radially varying delay‐compensated distributed control of reaction‐diffusion PDEs on n‐ball under revolution symmetry conditions, International Journal of Robust and Nonlinear Control, Volume 32 (2022) no. 15, p. 8421 | DOI:10.1002/rnc.6293
  • Liu, Xinglan; Xie, Chengkang Boundary control of reaction–diffusion equations on higher-dimensional symmetric domains, Automatica, Volume 114 (2020), p. 108832 | DOI:10.1016/j.automatica.2020.108832
  • Zhou, Hua-Cheng; Guo, Bao-Zhu; Xiang, Shu-Huang Performance Output Tracking for Multidimensional Heat Equation Subject to Unmatched Disturbance and Noncollocated Control, IEEE Transactions on Automatic Control, Volume 65 (2020) no. 5, p. 1940 | DOI:10.1109/tac.2019.2926132
  • Vazquez, Rafael; Krstic, Miroslav; Zhang, Jing; Qi, Jie, 2019 IEEE 58th Conference on Decision and Control (CDC) (2019), p. 2169 | DOI:10.1109/cdc40024.2019.9030115
  • Bekiaris-Liberis, Nikolaos; Vazquez, Rafael Nonlinear bilateral output-feedback control for a class of viscous Hamilton–Jacobi PDEs, Automatica, Volume 101 (2019), p. 223 | DOI:10.1016/j.automatica.2018.12.005
  • Qi, Jie; Wang, Shanshan; Fang, Jian-an; Diagne, Mamadou Control of multi-agent systems with input delay via PDE-based method, Automatica, Volume 106 (2019), p. 91 | DOI:10.1016/j.automatica.2019.04.032
  • Kang, Wen; Li, Shan; Ding, Da-Wei Input-to-State Stabilization of Uncertain Parabolic PDEs Using an Observer-Based Fuzzy Control, IEEE Access, Volume 7 (2019), p. 3581 | DOI:10.1109/access.2018.2889650
  • Kang, Wen; Ding, Da-Wei Delayed Fuzzy Control of a 1-D Reaction-Diffusion Equation Using Sampled-in-Space Sensing and Actuation, IEEE Transactions on Fuzzy Systems, Volume 27 (2019) no. 4, p. 802 | DOI:10.1109/tfuzz.2019.2893570
  • Vazquez, Rafael; Krstic, Miroslav Boundary control and estimation of reaction–diffusion equations on the sphere under revolution symmetry conditions, International Journal of Control, Volume 92 (2019) no. 1, p. 2 | DOI:10.1080/00207179.2017.1286691
  • Camacho-Solorio, Leobardo; Moura, Scott; Krstic, Miroslav, 2018 Annual American Control Conference (ACC) (2018), p. 3484 | DOI:10.23919/acc.2018.8430985
  • Bekiaris-Liberis, Nikolaos; Vazquez, Rafael, 2018 IEEE Conference on Decision and Control (CDC) (2018), p. 515 | DOI:10.1109/cdc.2018.8619363

Cité par 21 documents. Sources : Crossref