This paper introduces an explicit output-feedback boundary feedback law that stabilizes an unstable linear constant-coefficient reaction-diffusion equation on an
Accepté le :
DOI : 10.1051/cocv/2016033
Mots-clés : Infinite-dimensional backstepping, boundary control, boundary observer, reaction-diffusion system, spherical harmonics
@article{COCV_2016__22_4_1078_0, author = {Vazquez, Rafael and Krstic, Miroslav}, title = {Explicit output-feedback boundary control of reaction-diffusion {PDEs} on arbitrary-dimensional balls}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1078--1096}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016033}, mrnumber = {3570495}, zbl = {1358.35058}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2016033/} }
TY - JOUR AU - Vazquez, Rafael AU - Krstic, Miroslav TI - Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1078 EP - 1096 VL - 22 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016033/ DO - 10.1051/cocv/2016033 LA - en ID - COCV_2016__22_4_1078_0 ER -
%0 Journal Article %A Vazquez, Rafael %A Krstic, Miroslav %T Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1078-1096 %V 22 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016033/ %R 10.1051/cocv/2016033 %G en %F COCV_2016__22_4_1078_0
Vazquez, Rafael; Krstic, Miroslav. Explicit output-feedback boundary control of reaction-diffusion PDEs on arbitrary-dimensional balls. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1078-1096. doi : 10.1051/cocv/2016033. https://www.numdam.org/articles/10.1051/cocv/2016033/
M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, 9th edition. Dover (1965). | MR
K.Atkinson and W. Han, Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer (2012). | MR | Zbl
Boundary Stabilization of Equilibrium Solutions to Parabolic Equations. IEEE Trans. Automat. Control 58 (2013) 2416–2420. | DOI | MR | Zbl
,H. Brezis, Functional analysis, Sobolev spaces and Partial Differential Equations. Springer (2011). | MR | Zbl
Local Exponential
F. Bribiesca Argomedo, A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients. IEEE Trans. Automat. Control 58 (2013) 290–303. | DOI | MR | Zbl
, and ,Stabilization of a system of n+1 coupled first-order hyperbolic linear PDEs with a single boundary input. IEEE Trans. Automat. Control 58 (2013) 3097–3111. | DOI | MR | Zbl
, and ,L.C. Evans, Partial Differential Equations. AMS, Providence, Rhode Island (1998). | Zbl
M. Krstic, Delay Compensation for nonlinear, Adaptive, and PDE Systems. Birkhauser (2009). | MR | Zbl
M. Krstic and A. Smyshlyaev, Boundary Control of PDEs. SIAM (2008). | MR | Zbl
Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Contr. Lett. 57 (2008) 750–758. | DOI | MR | Zbl
and ,T. Meurer, Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs. Springer (2013). | MR | Zbl
Finite-time multi-agent deployment: A nonlinear PDE motion planning approach. Automatica 47 (2011) 2534–2542. | DOI | MR | Zbl
and ,S.J. Moura, N.A. Chaturvedi and M. Krstic, PDE estimation techniques for advanced battery management systems – Part I: SOC estimation. Proc. of the 2012 American Control Conference (2012).
Multi-Agent Deployment in 3-D via PDE Control. IEEE Trans. Automat. Control 60 (2015) 891–906. | DOI | MR | Zbl
, and ,A. Smyshlyaev and M. Krstic, Adaptive Control of Parabolic PDEs. Princeton University Press (2010). | MR | Zbl
Boundary stabilization of a 1-D wave equation with in-domain antidamping. SIAM J. Control Optim. 48 (2010) 4014–4031. | DOI | MR | Zbl
, and ,“Boundary feedback stabilization of parabolic equations. Appl. Math. Optim. 6 (1980) 201–220. | DOI | MR | Zbl
,R. Vazquez and M. Krstic, Control of Turbulent and Magnetohydrodynamic Channel Flow. Birkhauser (2008). | MR | Zbl
Control of 1-D parabolic PDEs with Volterra nonlinearities – Part I: Design. Automatica 44 (2008) 2778–2790. | DOI | MR | Zbl
and ,Boundary observer for output-feedback stabilization of thermal convection loop. IEEE Trans. Control Syst. Technol. 18 (2010) 789–797. | DOI
and ,R. Vazquez and M. Krstic, Explicit boundary control of a reaction-diffusion equation on a disk. Proc. of the 2014 IFAC World Congress (2014). | MR
R. Vazquez and M. Krstic, Explicit Boundary Control of Reaction-Diffusion PDEs on Arbitrary-Dimensional Balls. Proc. of the 2015 European Control Conference (2015). | Numdam | MR
Control for fast and stable laminar-to-high-Reynolds-numbers transfer in a 2D navier−Stokes channel flow. Discretes Contin. Dyn. Syst. Ser. B 10 (2008) 925–956. | MR | Zbl
, and ,- , 2024 European Control Conference (ECC) (2024), p. 354 | DOI:10.23919/ecc64448.2024.10590793
- , 2024 IEEE 63rd Conference on Decision and Control (CDC) (2024), p. 3428 | DOI:10.1109/cdc56724.2024.10886417
- Delayed finite-dimensional observer-based control of 2D linear parabolic PDEs, Automatica, Volume 164 (2024), p. 111607 | DOI:10.1016/j.automatica.2024.111607
- Delay-adaptive compensation for 3-D formation control of leader-actuated multi-agent systems, Automatica, Volume 164 (2024), p. 111645 | DOI:10.1016/j.automatica.2024.111645
- Neural operators of backstepping controller and observer gain functions for reaction–diffusion PDEs, Automatica, Volume 164 (2024), p. 111649 | DOI:10.1016/j.automatica.2024.111649
- , 2023 62nd IEEE Conference on Decision and Control (CDC) (2023), p. 8162 | DOI:10.1109/cdc49753.2023.10384080
- Bilateral boundary control of an input delayed 2-D reaction–diffusion equation, Automatica, Volume 157 (2023), p. 111242 | DOI:10.1016/j.automatica.2023.111242
- , 2022 IEEE 61st Conference on Decision and Control (CDC) (2022), p. 5423 | DOI:10.1109/cdc51059.2022.9992759
- Control of the Stefan System and Applications: A Tutorial, Annual Review of Control, Robotics, and Autonomous Systems, Volume 5 (2022) no. 1, p. 547 | DOI:10.1146/annurev-control-042920-014825
- Boundary output feedback stabilization for spacial multi‐dimensional coupled fractional reaction–diffusion systems, Asian Journal of Control, Volume 24 (2022) no. 5, p. 2751 | DOI:10.1002/asjc.2636
- Radially varying delay‐compensated distributed control of reaction‐diffusion PDEs on n‐ball under revolution symmetry conditions, International Journal of Robust and Nonlinear Control, Volume 32 (2022) no. 15, p. 8421 | DOI:10.1002/rnc.6293
- Boundary control of reaction–diffusion equations on higher-dimensional symmetric domains, Automatica, Volume 114 (2020), p. 108832 | DOI:10.1016/j.automatica.2020.108832
- Performance Output Tracking for Multidimensional Heat Equation Subject to Unmatched Disturbance and Noncollocated Control, IEEE Transactions on Automatic Control, Volume 65 (2020) no. 5, p. 1940 | DOI:10.1109/tac.2019.2926132
- , 2019 IEEE 58th Conference on Decision and Control (CDC) (2019), p. 2169 | DOI:10.1109/cdc40024.2019.9030115
- Nonlinear bilateral output-feedback control for a class of viscous Hamilton–Jacobi PDEs, Automatica, Volume 101 (2019), p. 223 | DOI:10.1016/j.automatica.2018.12.005
- Control of multi-agent systems with input delay via PDE-based method, Automatica, Volume 106 (2019), p. 91 | DOI:10.1016/j.automatica.2019.04.032
- Input-to-State Stabilization of Uncertain Parabolic PDEs Using an Observer-Based Fuzzy Control, IEEE Access, Volume 7 (2019), p. 3581 | DOI:10.1109/access.2018.2889650
- Delayed Fuzzy Control of a 1-D Reaction-Diffusion Equation Using Sampled-in-Space Sensing and Actuation, IEEE Transactions on Fuzzy Systems, Volume 27 (2019) no. 4, p. 802 | DOI:10.1109/tfuzz.2019.2893570
- Boundary control and estimation of reaction–diffusion equations on the sphere under revolution symmetry conditions, International Journal of Control, Volume 92 (2019) no. 1, p. 2 | DOI:10.1080/00207179.2017.1286691
- , 2018 Annual American Control Conference (ACC) (2018), p. 3484 | DOI:10.23919/acc.2018.8430985
- , 2018 IEEE Conference on Decision and Control (CDC) (2018), p. 515 | DOI:10.1109/cdc.2018.8619363
Cité par 21 documents. Sources : Crossref