Spectral inequality and optimal cost of controllability for the Stokes system
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1137-1162.

In this paper we present a new proof of the null controllability property for the Stokes system. The proof is based on a new spectral inequality for the eigenfunctions of the Stokes operator. As a consequence, we obtain the cost of the null controllability for the Stokes system of order e C/T , when T is small, i.e., the same order in time as for the heat equation.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2016034
Classification : 35K40, 35Q30, 49J20
Mots clés : Stokes system, null controllability, Carleman estimates, spectral inequality
Chaves-Silva, Felipe W. 1 ; Lebeau, Gilles 1

1 Universitéde Nice Sophia-Antipolis, Laboratoire Jean A. Dieudonné, UMR CNRS 6621, Parc Valrose, 06108 Nice cedex 02, France.
@article{COCV_2016__22_4_1137_0,
     author = {Chaves-Silva, Felipe W. and Lebeau, Gilles},
     title = {Spectral inequality and optimal cost of controllability for the {Stokes} system},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1137--1162},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {4},
     year = {2016},
     doi = {10.1051/cocv/2016034},
     zbl = {1357.35178},
     mrnumber = {3570497},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2016034/}
}
TY  - JOUR
AU  - Chaves-Silva, Felipe W.
AU  - Lebeau, Gilles
TI  - Spectral inequality and optimal cost of controllability for the Stokes system
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 1137
EP  - 1162
VL  - 22
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2016034/
DO  - 10.1051/cocv/2016034
LA  - en
ID  - COCV_2016__22_4_1137_0
ER  - 
%0 Journal Article
%A Chaves-Silva, Felipe W.
%A Lebeau, Gilles
%T Spectral inequality and optimal cost of controllability for the Stokes system
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 1137-1162
%V 22
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2016034/
%R 10.1051/cocv/2016034
%G en
%F COCV_2016__22_4_1137_0
Chaves-Silva, Felipe W.; Lebeau, Gilles. Spectral inequality and optimal cost of controllability for the Stokes system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1137-1162. doi : 10.1051/cocv/2016034. http://archive.numdam.org/articles/10.1051/cocv/2016034/

F.W. Chaves-Silva, A hyperbolic system and the cost of the null controllability for the Stokes system. Comput. Appl. Math. 34 (2015) 1057–1074. | DOI | Zbl

J.-M. Coron and S. Guerrero, Null controllability of the N-dimensional Stokes system with N-1 scalar controls. J. Differ. Equ. 246 (2009) 2908–2921. | DOI | Zbl

M. Dimassi and J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit, Vol. 268 of Lecture Note Series. Cambridge University Press, London (1999) vii+226p. | Zbl

S. Ervedoza and E. Zuazua, Observability of heat processes by transmutation without geometric restrictions. Math. Control Rel. Fields 1 (2011) 177–187. | DOI | Zbl

S. Ervedoza and E. Zuazua, Sharp observability estimates for heat equations. Arch. Rational Mech. Anal. 202 (2011) 975–1017. | DOI | Zbl

C. Fabre and G. Lebeau, Régularité et unicité pour le problème de Stokes. Commun. Partial Differ. Equ. 27 (2002) 437–475. | DOI | Zbl

E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. | Zbl

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. | DOI | Zbl

E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Some controllability results for the N-dimensional Navier-Stokes and Boussinesq system. SIAM J. Control Optim. 45 (2006) 146–173. | DOI | Zbl

A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Vol. 34 of Lecture Notes Series. Research Institute of Mathematics, Seoul National University, Seoul (1996). | MR | Zbl

O. Yu. Imanuvilov, Remarks on exact controllability for the Navier−Stokes equations. ESAIM: COCV 6 (2001) 39–72. | Numdam | MR | Zbl

O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30 (2009) 333–378. | DOI | MR | Zbl

O. Yu. Imanuvilov, J.-P. Puel and M. Yamamoto, Carleman estimates for second order non homogeneous parabolic equations (preprint).

G. Lebeau, Introduction aux inégalités de Carleman. Séminaires et Congrès. In vol. 29. Publications SMF (2015) 51–92. | MR

G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20 (1995) 335–356. | DOI | MR | Zbl

G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141 (1998) 297–329. | DOI | MR | Zbl

J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM: COCV 18 (2012) 712–747. | Numdam | MR | Zbl

A. Martinez, An introduction to Semiclassical and Microlocal Analysis. Springer, New York (2002). | MR | Zbl

G. Métivier, Valeurs propres d’opérateurs définis par la restriction de systèmes variationnels à des sous-espaces. J. Math. Pures Appl. 9 (1978) 133–156. | MR | Zbl

L. Miller, Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204 (2004) 202–226. | DOI | MR | Zbl

L. Miller, The Control Transmutation Method and the cost of fast controls. SIAM J. Control Optim. 45 (2006) 762–772. | DOI | MR | Zbl

L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1465–1485. | MR | Zbl

L. Robbiano, Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptot. Anal. 10 (1995) 95–115. | MR | Zbl

T.I. Seidman, How violent are fast controls: III. J. Math. Anal. Appl. 339 (2008) 461–468. | DOI | MR | Zbl

Cité par Sources :