Accepté le :
DOI : 10.1051/cocv/2016037
Mots-clés : Sobolev spaces, degree, sphere-valued maps, homotopy classes
@article{COCV_2016__22_4_1204_0, author = {Brezis, Ha{\"\i}m and Mironescu, Petru and Shafrir, Itai}, title = {Distances between homotopy classes of {W\protect\textsuperscript{s,p}(\ensuremath{\mathbb{S}}\protect\textsuperscript{N};\ensuremath{\mathbb{S}}\protect\textsuperscript{N})}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1204--1235}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016037}, zbl = {1371.46027}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2016037/} }
TY - JOUR AU - Brezis, HaĂŻm AU - Mironescu, Petru AU - Shafrir, Itai TI - Distances between homotopy classes of Ws,p(đť•ŠN;đť•ŠN) JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1204 EP - 1235 VL - 22 IS - 4 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2016037/ DO - 10.1051/cocv/2016037 LA - en ID - COCV_2016__22_4_1204_0 ER -
%0 Journal Article %A Brezis, HaĂŻm %A Mironescu, Petru %A Shafrir, Itai %T Distances between homotopy classes of Ws,p(đť•ŠN;đť•ŠN) %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1204-1235 %V 22 %N 4 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2016037/ %R 10.1051/cocv/2016037 %G en %F COCV_2016__22_4_1204_0
Brezis, HaĂŻm; Mironescu, Petru; Shafrir, Itai. Distances between homotopy classes of Ws,p(đť•ŠN;đť•ŠN). ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1204-1235. doi : 10.1051/cocv/2016037. https://www.numdam.org/articles/10.1051/cocv/2016037/
Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling. Commun. Partial Differential Equations 39 (2014) 946–1005. | DOI | Zbl
, , and ,Lifting in Sobolev spaces. J. Anal. Math. 80 (2000) 37–86. | DOI | Zbl
, and ,Lifting, degree, and the distributional Jacobian revisited. Commun. Pure Appl. Math. 58 (2005) 529–551. | DOI | Zbl
, and ,J. Bourgain, H. Brezis and P. Mironescu, Complements to the paper Lifting, degree, and the distributional Jacobian revisited (2005) . | HAL
A boundary value problem related to the Ginzburg–Landau model. Commun. Math. Phys. 142 (1991) 1–23. | DOI | Zbl
, and ,H. Brezis, Large harmonic maps in two dimensions, in Proc. of Symp. on Nonlinear variational problems, Isola d’Elba, 1983. Pitman, Boston, MA (1985) 33–46. | Zbl
H. Brezis, Metastable harmonic maps, in Metastability and incompletely posed problems, Minneapolis, 1985. Vol. 3 of IMA Vol. Math. Appl. Springer, New York (1987) 33–42. | Zbl
H. Brezis, New questions related to the topological degree, The unity of mathematics. In Vol. 244 of Progr. Math. Birkhäuser Boston, Boston, MA (2006) 137–154. | Zbl
Large solutions for harmonic maps in two dimensions. Commun. Math. Phys. 92 (1983) 203–215. | DOI | Zbl
and ,H. Brezis and P. Mironescu, Sobolev maps with values into the circle. Birkhäuser. In preparation (2016).
Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1 (1995) 197–263. | DOI | Zbl
and ,
H. Brezis, P. Mironescu and A. Ponce,
H. Brezis, P. Mironescu and I. Shafrir, Distances between classes in
On the distance between homotopy classes of maps between spheres. J. Fixed Point Theory Appl. 15 (2014) 501–518. | DOI | Zbl
and ,The distance between homotopy classes of 𝕊1-valued maps in multiply connected domains. Israel J. Math. 160 (2007) 41–59. | DOI | Zbl
and ,Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18 (1983) 253–268. | DOI | Zbl
and ,Cité par Sources :