Accepté le :
DOI : 10.1051/cocv/2016037
Mots-clés : Sobolev spaces, degree, sphere-valued maps, homotopy classes
@article{COCV_2016__22_4_1204_0, author = {Brezis, Ha{\"\i}m and Mironescu, Petru and Shafrir, Itai}, title = {Distances between homotopy classes of {W\protect\textsuperscript{s,p}(\ensuremath{\mathbb{S}}\protect\textsuperscript{N};\ensuremath{\mathbb{S}}\protect\textsuperscript{N})}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1204--1235}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016037}, zbl = {1371.46027}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2016037/} }
TY - JOUR AU - Brezis, HaĂŻm AU - Mironescu, Petru AU - Shafrir, Itai TI - Distances between homotopy classes of Ws,p(đť•ŠN;đť•ŠN) JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 1204 EP - 1235 VL - 22 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2016037/ DO - 10.1051/cocv/2016037 LA - en ID - COCV_2016__22_4_1204_0 ER -
%0 Journal Article %A Brezis, HaĂŻm %A Mironescu, Petru %A Shafrir, Itai %T Distances between homotopy classes of Ws,p(đť•ŠN;đť•ŠN) %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 1204-1235 %V 22 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2016037/ %R 10.1051/cocv/2016037 %G en %F COCV_2016__22_4_1204_0
Brezis, HaĂŻm; Mironescu, Petru; Shafrir, Itai. Distances between homotopy classes of Ws,p(đť•ŠN;đť•ŠN). ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 4, pp. 1204-1235. doi : 10.1051/cocv/2016037. http://archive.numdam.org/articles/10.1051/cocv/2016037/
Minimax critical points in Ginzburg-Landau problems with semi-stiff boundary conditions: existence and bubbling. Commun. Partial Differential Equations 39 (2014) 946–1005. | DOI | Zbl
, , and ,Lifting in Sobolev spaces. J. Anal. Math. 80 (2000) 37–86. | DOI | Zbl
, and ,Lifting, degree, and the distributional Jacobian revisited. Commun. Pure Appl. Math. 58 (2005) 529–551. | DOI | Zbl
, and ,J. Bourgain, H. Brezis and P. Mironescu, Complements to the paper Lifting, degree, and the distributional Jacobian revisited (2005) . | HAL
A boundary value problem related to the Ginzburg–Landau model. Commun. Math. Phys. 142 (1991) 1–23. | DOI | Zbl
, and ,H. Brezis, Large harmonic maps in two dimensions, in Proc. of Symp. on Nonlinear variational problems, Isola d’Elba, 1983. Pitman, Boston, MA (1985) 33–46. | Zbl
H. Brezis, Metastable harmonic maps, in Metastability and incompletely posed problems, Minneapolis, 1985. Vol. 3 of IMA Vol. Math. Appl. Springer, New York (1987) 33–42. | Zbl
H. Brezis, New questions related to the topological degree, The unity of mathematics. In Vol. 244 of Progr. Math. Birkhäuser Boston, Boston, MA (2006) 137–154. | Zbl
Large solutions for harmonic maps in two dimensions. Commun. Math. Phys. 92 (1983) 203–215. | DOI | Zbl
and ,H. Brezis and P. Mironescu, Sobolev maps with values into the circle. Birkhäuser. In preparation (2016).
Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.) 1 (1995) 197–263. | DOI | Zbl
and ,H. Brezis, P. Mironescu and A. Ponce,-maps with values into 𝕊1, in Geometric analysis of PDE and several complex variables. Vol. 368 of Contemp. Math. Amer. Math. Soc. Providence, RI (2005) 69–100. | Zbl
H. Brezis, P. Mironescu and I. Shafrir, Distances between classes in . In preparation (2016).
On the distance between homotopy classes of maps between spheres. J. Fixed Point Theory Appl. 15 (2014) 501–518. | DOI | Zbl
and ,The distance between homotopy classes of 𝕊1-valued maps in multiply connected domains. Israel J. Math. 160 (2007) 41–59. | DOI | Zbl
and ,Boundary regularity and the Dirichlet problem for harmonic maps. J. Differ. Geom. 18 (1983) 253–268. | DOI | Zbl
and ,Cité par Sources :