@article{COCV_2016__22_4_913_0, editor = {Beauchard, Karine and Tr\'elat, Emmanuel}, title = {PREFACE {Special} issue in honor of {Jean-Michel} {Coron} for his 60th birthday}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {913--920}, publisher = {EDP-Sciences}, volume = {22}, number = {4}, year = {2016}, doi = {10.1051/cocv/2016057}, zbl = {1354.01018}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2016057/} }
TY - JOUR ED - Beauchard, Karine ED - Trélat, Emmanuel TI - PREFACE Special issue in honor of Jean-Michel Coron for his 60th birthday JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 913 EP - 920 VL - 22 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2016057/ DO - 10.1051/cocv/2016057 LA - en ID - COCV_2016__22_4_913_0 ER -
%0 Journal Article %E Beauchard, Karine %E Trélat, Emmanuel %T PREFACE Special issue in honor of Jean-Michel Coron for his 60th birthday %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 913-920 %V 22 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2016057/ %R 10.1051/cocv/2016057 %G en %F COCV_2016__22_4_913_0
Beauchard, Karine; Trélat, Emmanuel (ed.). PREFACE Special issue in honor of Jean-Michel Coron for his 60th birthday. ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, pp. 913-920. doi : 10.1051/cocv/2016057. http://archive.numdam.org/articles/10.1051/cocv/2016057/
Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55 (1976) 269–296. | Zbl
,On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain. Comm. Pure Appl. Math. 41 (1988) 253–294. | DOI | Zbl
and ,Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. | DOI | Zbl
, and ,Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232 (2006) 328–389. | DOI | Zbl
and ,Controllability issues for continuous-spectrum systems and ensemble controllability of Bloch equations. Comm. Math. Phys. 296 (2010) 525–557. | DOI | Zbl
, and ,Local controllability of 1D Schrödinger equations with bilinear control and minimal time. Math. Control Relat. Fields 4 (2014) 125–160. | DOI | Zbl
and ,Multiple solutions of -systems and Rellich’s conjecture. Comm. Pure Appl. Math. 37 (1984) 149–187. | DOI | Zbl
and ,Convergence of solutions of -systems or how to blow bubbles. Arch. Rational Mech. Anal. 89 (1985) 21–56. | DOI | Zbl
and ,Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. | DOI | Zbl
, and ,Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36 (1983) 437–477. | DOI | Zbl
and ,R.W. Brockett, Asymptotic stability and feedback stabilization. In Differential geometric control theory (Houghton, Mich., 1982), edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Vol. 27 of Progr. Math. Birkhäuser Boston, Boston, MA (1983) 181–191. | Zbl
Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain. SIAM J. Control Optim. 46 (2007) 877–899. | DOI | Zbl
,Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26 (2009) 457–475. | DOI | Numdam | Zbl
and ,Topologie et cas limite des injections de Sobolev. C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 209–212. | Zbl
,Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990) 335–344. | DOI | Numdam | Zbl
,Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295–312. | DOI | Zbl
,Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math. 317 (1993) 271–276. | Zbl
,Linearized control systems and applications to smooth stabilization. SIAM J. Control Optim. 32 (1994) 358–386. | DOI | Zbl
,On the stabilization of controllable and observable systems by an output feedback law. Math. Control Signals Systems 7 (1994) 187–216. | DOI | Zbl
,On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law. SIAM J. Control Optim. 33 (1995) 804–833. | DOI | Zbl
,On the controllability of the -D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1996) 35–75. | Numdam | Zbl
,On the controllability of -D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155–188. | MR | Zbl
,Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations. A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 513–554. | Numdam | Zbl
,J.-M. Coron, Control and nonlinearity, Vol. 136 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2007). | Zbl
Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim. 47 (2008) 1460–1498. | DOI | Zbl
, and ,Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. (JEMS) 6 (2004) 367–398. | DOI | Zbl
and ,Global exact controllability of the D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429–448. | Zbl
and ,Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris Sér. I Math. 308 (1989) 339–344. | Zbl
and ,Local rapid stabilization for a Korteweg-de Vries equation with a Neumann boundary control on the right. J. Math. Pures Appl. 102 (2014) 1080–1120. | DOI | Zbl
and ,Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation. J. Differ. Equ. 259 (2015) 3683–3729. | DOI | Zbl
and ,Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: sharp conditions through an approach via time-delay systems. SIAM J. Math. Anal. 47 (2015) 2220–2240. | DOI | Zbl
and ,Global steady-state controllability of one-dimensional semilinear heat equations. SIAM J. Control Optim. 43 (2004) 549–569. | DOI | Zbl
and ,A.V. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations. Vol. 34 of Lecture Notes Series. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996). | Zbl
Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44. | Numdam | Zbl
,O. Glass, La méthode du retour en contrôlabilité et ses applications en mécanique des fluides [d’après Coron et al.]. Astérisque, (348), Exp. No. 1027, vii, 1–16 (2012). Séminaire Bourbaki. Vol. 2010/2011. Exposés 1027–1042. | Numdam | Zbl
Observabilité frontière de l’équation des ondes. C. R. Acad. Sci. Paris Sér. I Math. 302 (1986) 443–446. | Zbl
,Boundary controllability of parabolic equations. Uspekhi Mat. Nauk 48 (1993) 211–212. | Zbl
,Controllability of parabolic equations. Mat. Sb. 186 (1995) 109–132. | Zbl
,M. Krstic and A. Smyshlyaev, Boundary control of PDEs. A course on backstepping designs. Vol. 16 of Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008). | Zbl
Contrôle exact de l’équation de la chaleur. Comm. Partial Differ. Equ. 20 (1995) 335–356. | DOI | Zbl
and ,J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. Contrôlabilité exacte. [Exact controllability], With appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. Tome 1, Vol. 8 of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris (1988). | Zbl
Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 30 (1988) 1–68. | DOI | MR | Zbl
,Simultaneous local exact controllability of 1D bilinear Schrödinger equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31 (2014) 501–529. | DOI | Numdam | Zbl
,Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM: COCV 2 (1997) 33–55. | Numdam | Zbl
,Nonharmonic Fourier series in the control theory of distributed parameter systems. J. Math. Anal. Appl. 18 (1967) 542–560. | DOI | Zbl
,Cited by Sources: