We consider a class of quasilinear operators on a bounded domain and address the question of optimizing the first eigenvalue with respect to the boundary conditions, which are of the Robin-type. We describe the optimizing boundary conditions and establish upper and lower bounds on the respective maximal and minimal eigenvalue.
Mots-clés : Robin boundary conditions, optimization problem, p −Laplacian
@article{COCV_2017__23_4_1381_0, author = {Della Pietra, Francesco and Gavitone, Nunzia and Kova\v{r}{\'\i}k, Hynek}, title = {Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1381--1395}, publisher = {EDP-Sciences}, volume = {23}, number = {4}, year = {2017}, doi = {10.1051/cocv/2016058}, mrnumber = {3716925}, zbl = {1386.35294}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2016058/} }
TY - JOUR AU - Della Pietra, Francesco AU - Gavitone, Nunzia AU - Kovařík, Hynek TI - Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2017 SP - 1381 EP - 1395 VL - 23 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2016058/ DO - 10.1051/cocv/2016058 LA - en ID - COCV_2017__23_4_1381_0 ER -
%0 Journal Article %A Della Pietra, Francesco %A Gavitone, Nunzia %A Kovařík, Hynek %T Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2017 %P 1381-1395 %V 23 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2016058/ %R 10.1051/cocv/2016058 %G en %F COCV_2017__23_4_1381_0
Della Pietra, Francesco; Gavitone, Nunzia; Kovařík, Hynek. Optimizing the first eigenvalue of some quasilinear operators with respect to boundary conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 23 (2017) no. 4, pp. 1381-1395. doi : 10.1051/cocv/2016058. http://archive.numdam.org/articles/10.1051/cocv/2016058/
R. Adams, Sobolev Spaces. In vol. 65 of Pure and Applied Mathematics. Academic Press, New York, London (1975). | MR | Zbl
Simplicity and isolation of the first eigenvalue of the p-Laplacian with weight. C.R. Acad. Sci. Paris Sér. I Math. 305 (1987) 725–728. | MR | Zbl
,Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293–318. | DOI | MR | Zbl
,A direct uniqueness proof for equations involving the Laplace operator. Manuscr. Math. 109 (2002) 229–231. | DOI | MR | Zbl
and ,Membranes élastiquement liées: extension du théorème de Rayleigh-Faber-Krahn et de linégalité de Cheeger. C.R. Acad. Sci. Paris Ser. I Math. 302 (1986) 47–50. | MR | Zbl
,Symmetry breaking for a problem in optimal insulation. J. Math. Pures Appl. 107 (2017) 451–463. | DOI | MR
, and ,A variational approach to the isoperimetric inequality for the Robin eigenvalue problem. Arch. Ration. Mech. Anal. 198 (2010) 927–961. | DOI | MR | Zbl
and ,Faber-Krahn inequalities for the Robin-Laplacian: a free discontinuity approach. Arch. Ration. Mech. Anal. 218 (2014) 757–824. | DOI | MR | Zbl
and ,Faber-Krahn inequality for Robin problems involving -Laplacian. Acta Math. Appl. Sin., Engl. Ser. 27 (2011) 13–28. | DOI | MR | Zbl
and ,A Faber-Krahn inequality for Robin problems in any space dimension. Math. Anal. 335 (2006) 767–785. | DOI | MR | Zbl
,Faber-Krahn inequality for anisotropic eigenvalue problems with Robin boundary conditions Potential Anal. 41 (2014) 1147–1166. | DOI | MR | Zbl
and ,Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I 305 (1987) 521–524. | MR | Zbl
and ,L.C. Evans, Partial Differential Equations. In Vol. 19 of Graduate Studies in Mathematics. American Mathematical Society (1998). | MR | Zbl
Beweiss das unter allen homogenen Membranen von Gleicher Fläche und gleicher Spannung die kreisförmige den Tiefsten Grundton gibt. Sitz. der math.-phys. Cl. der k bayer. Akad. d. Wiss. (1923) 169–172. | JFM
,C.Nitsch and C. Trombetti, On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue. Commun. Pure Appl. Anal. 14 (2015) 63–82. | DOI | MR | Zbl
,The first Robin eigenvalue with negative boundary parameter, Adv. Math. 280 (2015) 322–339. | DOI | MR | Zbl
and ,On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33 (2001) 240–259. | DOI | MR | Zbl
, and ,Minimization problems for eigenvalues of the Laplacian. J. Evol. Equ. 3 (2003) 443–461. | MR | Zbl
,The method of interior parallels applied to polygonal or multiply connected membranes. Pacific J. Math. 13 (1963) 1229–1238. | DOI | MR | Zbl
,On the Lowest Eigenvalue of Laplace Operators with Mixed Boundary Conditions. J. Geom. Anal. 24 (2014) 1509–1525. | DOI | MR | Zbl
,Über eine von Rayleigh formulierte minimal Eigenschaft des Kreises. Ann. Math. 94 (1925) 97–100. | DOI | JFM | MR
,O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968). | MR | Zbl
E.H. Lieb and M. Loss, Analysis, 2nd edition. In vol. 14 of Grad. Stud. Math. American Mathematical Society, Providence, RI (2001). | MR | Zbl
Boundary regularity for solutions of degenerate elliptic equations. Nonlin. Anal. 12 (1988) 1203–1219. | DOI | MR | Zbl
,An introduction to the Cheeger problem. Surv. Math. Appl. 6 (2011) 9–21. | MR | Zbl
,Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo-ordine. Atti Accad. Naz. Lincei Rend. 20 (1911) 213–219. | JFM
,A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12 (1984) 191–202. | DOI | MR | Zbl
,A class of fully nonlinear elliptic equations and related functionals. Ind. Univ. Math. J. 43 (1994) 25–54. | DOI | MR | Zbl
,Cité par Sources :