BMO-type seminorms and Sobolev functions
ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 2, pp. 835-847.

Following some ideas of a recent paper by Bourgain, Brezis and Mironescu, we give a representation formula of the norm of the gradient of a Sobolev function which does not make use of the distributional derivatives.

Received:
Accepted:
DOI: 10.1051/cocv/2017023
Classification: 46E35
Keywords: Sobolev functions, Nikol’skij spaces, BMO-type seminorms
Fusco, Nicola 1; Moscariello, Gioconda 1; Sbordone, Carlo 1

1
@article{COCV_2018__24_2_835_0,
     author = {Fusco, Nicola and Moscariello, Gioconda and Sbordone, Carlo},
     title = {BMO-type seminorms and {Sobolev} functions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {835--847},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {2},
     year = {2018},
     doi = {10.1051/cocv/2017023},
     zbl = {1410.46021},
     mrnumber = {3816417},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017023/}
}
TY  - JOUR
AU  - Fusco, Nicola
AU  - Moscariello, Gioconda
AU  - Sbordone, Carlo
TI  - BMO-type seminorms and Sobolev functions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 835
EP  - 847
VL  - 24
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017023/
DO  - 10.1051/cocv/2017023
LA  - en
ID  - COCV_2018__24_2_835_0
ER  - 
%0 Journal Article
%A Fusco, Nicola
%A Moscariello, Gioconda
%A Sbordone, Carlo
%T BMO-type seminorms and Sobolev functions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 835-847
%V 24
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017023/
%R 10.1051/cocv/2017023
%G en
%F COCV_2018__24_2_835_0
Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo. BMO-type seminorms and Sobolev functions. ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 2, pp. 835-847. doi : 10.1051/cocv/2017023. http://archive.numdam.org/articles/10.1051/cocv/2017023/

[1] L. Ambrosio, H. Brezis, J. Bourgain and A. Figalli, BMO-type norms related to the perimeter of sets. Commun. Pure Appl. Math. 69 (2016) 1062–1086 | DOI | MR | Zbl

[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monogr. The Clarendon Press, Oxford University Press, New York (2000) | MR | Zbl

[3] L. Beck, Elliptic regularity theory. Lecture Notes of the Unione Matematica Italiana Springer International Publishing, Switzerland (2016) | DOI | MR

[4] J. Bourgain, H. Brezis and P. Mironescu, A new function space and applications. J. Eur. Math. Soc. 6 (2015) 2083–2101 | DOI | MR | Zbl

[5] G. De Philippis, N. Fusco and A. Pratelli, On the approximation of SBV functions. To appear in Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., also available at http://cvgmt.sns.it/paper/3235/. | MR

[6] N. Fusco, G. Moscariello and C. Sbordone, A formula for the total variation of SBV functions. J. Funct. Anal. 270 (2016) 419–446 | DOI | MR | Zbl

[7] H. Hadwiger, Gitterperiodische Punktmengen und Isoperimetrie. Monatsh. Math. 76 (1972) 410–418 | DOI | MR | Zbl

[8] J. Kristensen and G. Mingione, The singular set of ω-minima. Arch. Ration. Mech. Anal. 177 (2005) 93–114 | DOI | MR | Zbl

Cited by Sources: