Following some ideas of a recent paper by Bourgain, Brezis and Mironescu, we give a representation formula of the norm of the gradient of a Sobolev function which does not make use of the distributional derivatives.
Accepted:
DOI: 10.1051/cocv/2017023
Keywords: Sobolev functions, Nikol’skij spaces, BMO-type seminorms
@article{COCV_2018__24_2_835_0, author = {Fusco, Nicola and Moscariello, Gioconda and Sbordone, Carlo}, title = {BMO-type seminorms and {Sobolev} functions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {835--847}, publisher = {EDP-Sciences}, volume = {24}, number = {2}, year = {2018}, doi = {10.1051/cocv/2017023}, zbl = {1410.46021}, mrnumber = {3816417}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2017023/} }
TY - JOUR AU - Fusco, Nicola AU - Moscariello, Gioconda AU - Sbordone, Carlo TI - BMO-type seminorms and Sobolev functions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 835 EP - 847 VL - 24 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2017023/ DO - 10.1051/cocv/2017023 LA - en ID - COCV_2018__24_2_835_0 ER -
%0 Journal Article %A Fusco, Nicola %A Moscariello, Gioconda %A Sbordone, Carlo %T BMO-type seminorms and Sobolev functions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 835-847 %V 24 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2017023/ %R 10.1051/cocv/2017023 %G en %F COCV_2018__24_2_835_0
Fusco, Nicola; Moscariello, Gioconda; Sbordone, Carlo. BMO-type seminorms and Sobolev functions. ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 2, pp. 835-847. doi : 10.1051/cocv/2017023. http://archive.numdam.org/articles/10.1051/cocv/2017023/
[1] BMO-type norms related to the perimeter of sets. Commun. Pure Appl. Math. 69 (2016) 1062–1086 | DOI | MR | Zbl
, , and ,[2] Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monogr. The Clarendon Press, Oxford University Press, New York (2000) | MR | Zbl
, and ,[3] Elliptic regularity theory. Lecture Notes of the Unione Matematica Italiana Springer International Publishing, Switzerland (2016) | DOI | MR
,[4] A new function space and applications. J. Eur. Math. Soc. 6 (2015) 2083–2101 | DOI | MR | Zbl
, and ,[5] G. De Philippis, N. Fusco and A. Pratelli, On the approximation of SBV functions. To appear in Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., also available at http://cvgmt.sns.it/paper/3235/. | MR
[6] A formula for the total variation of SBV functions. J. Funct. Anal. 270 (2016) 419–446 | DOI | MR | Zbl
, and ,[7] Gitterperiodische Punktmengen und Isoperimetrie. Monatsh. Math. 76 (1972) 410–418 | DOI | MR | Zbl
,[8] The singular set of ω-minima. Arch. Ration. Mech. Anal. 177 (2005) 93–114 | DOI | MR | Zbl
and ,Cited by Sources: