Distance estimates for state constrained trajectories of infinite dimensional differential inclusions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1207-1229.

This paper concerns estimates on the distance between a trajectory of a differential inclusion and the set of feasible trajectories of the same inclusion, feasible meaning confined to a given set of constraints. We apply these estimates to investigate Lipschitz continuity of the value functions arising in optimal control, and to variational inclusions, useful for proving non degenerate necessary optimality conditions. The main feature of our analysis is the infinite dimensional framework, which can be applied to models involving PDEs.

DOI : 10.1051/cocv/2017032
Classification : 34A60, 35Q93, 46N20, 47J22, 47N70, 93C23
Mots-clés : Semilinear differential inclusion, state constraint, neighboring feasible trajectory theorem
Frankowska, Helene 1 ; Marchini, Elsa M. 1 ; Mazzola, Marco 1

1
@article{COCV_2018__24_3_1207_0,
     author = {Frankowska, Helene and Marchini, Elsa M. and Mazzola, Marco},
     title = {Distance estimates for state constrained trajectories of infinite dimensional differential inclusions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1207--1229},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017032},
     mrnumber = {3877199},
     zbl = {1412.34192},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017032/}
}
TY  - JOUR
AU  - Frankowska, Helene
AU  - Marchini, Elsa M.
AU  - Mazzola, Marco
TI  - Distance estimates for state constrained trajectories of infinite dimensional differential inclusions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1207
EP  - 1229
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017032/
DO  - 10.1051/cocv/2017032
LA  - en
ID  - COCV_2018__24_3_1207_0
ER  - 
%0 Journal Article
%A Frankowska, Helene
%A Marchini, Elsa M.
%A Mazzola, Marco
%T Distance estimates for state constrained trajectories of infinite dimensional differential inclusions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1207-1229
%V 24
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017032/
%R 10.1051/cocv/2017032
%G en
%F COCV_2018__24_3_1207_0
Frankowska, Helene; Marchini, Elsa M.; Mazzola, Marco. Distance estimates for state constrained trajectories of infinite dimensional differential inclusions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 1207-1229. doi : 10.1051/cocv/2017032. http://archive.numdam.org/articles/10.1051/cocv/2017032/

[1] W. Arendt, Semigroups and evolution equations: functional calculus, regularity and kernel estimates. Evolutionary equations. Vol. I, Handb. Differ. Equ. North-Holland Amsterdam (2004) 1–85 | MR | Zbl

[2] W. Arendt, G. Metafune, D. Pallara and S. Romanelli, The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions. Semigroup Forum 67 247–261 2003 | MR | Zbl

[3] J.Y Beale and S.I. Rosencrans, Acoustic boundary conditions. Bull. Amer. Math. Soc. 80 1276–1278 1974 | MR | Zbl

[4] P. Bettiol, A. Bressan and R.B. Vinter, On trajectories satisfying a state constraint: W1,1 estimates and counter-examples. SIAM J. Control Optim. 48 4664–4679 2010 | MR | Zbl

[5] P. Bettiol, H. Frankowska and R.B. Vinter, L estimates on trajectories confined to a closed subset. J. Differential Equations 252 1912–1933 2012 | MR | Zbl

[6] H. Brézis, Analyse fonctionnelle: théorie et applications. Masson Paris (1983) | MR | Zbl

[7] H. Brezis and A. Pazy, Semigroups of nonlinear contractions on convex sets. J. Funct. Anal. 6 237–281 1970 | MR | Zbl

[8] P. Cannarsa and H. Frankowska, Value function and optimality conditions for semilinear control problems. Appl. Math. Optim. 26 139-169 1992 | MR | Zbl

[9] P. Cannarsa, H. Frankowska and G. Da Prato Invariance for quasi-dissipative systems in Banach spaces. J. Math. Anal. Appl., in press | MR

[10] P. Cannarsa, H. Frankowska and E.M. Marchini, On Bolza optimal control problems with constraints. Discrete Contin. Dyn. Syst. 11 629–653 2009 | MR | Zbl

[11] P. Cannarsa, H. Frankowska and E.M. Marchini, Optimal control for evolution equations with memory. J. Evol. Equ. 13 197-227 2013 | MR | Zbl

[12] K.N. Chueh, C.C. Conley and J.A. Smoller, Positively invariant regions for systems of nonlinear equation. Indiana Univ. Math. J. 26 373–392 1977 | MR | Zbl

[13] F.H. Clarke, Optimization and nonsmooth analysis. SIAM Philadelphia (1990) | DOI | MR | Zbl

[14] G.M. Coclite, G.R. Goldstein and J.A. Goldstein, Stability estimates for nonlinear hyperbolic problems with nonlinear Wentzell boundary conditions. Z. Angew. Math. Phys. 64 733–753 2013 | MR | Zbl

[15] C.M. Dafermos, Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37 297–308 1970 | MR | Zbl

[16] K.-J. Engel, The Laplacian on  𝒞 ( Ω ¯ ) with generalized Wentzell boundary conditions. Arch. Math. 81 548–558 2003 | MR | Zbl

[17] K.-J. Engel and , One-Parameter Semigroups for Linear Evolution Equations. Springer-Verlag New York (2000) | Zbl

[18] H. Frankowska, E.M. Marchini and M. Mazzola, A relaxation result for state constrained inclusions in infinite dimension. Math. Control Relat. Fields (MCRF) 6113–1412016 | MR

[19] H. Frankowska and M. Mazzola, Discontinuous solutions of Hamilton-Jacobi-Bellman equation under state constraints. Calc. Var. Partial Diff. Equ. 46 725–747 2013 | MR | Zbl

[20] H. Frankowska and M. Mazzola, On relations of the adjoint state to the value function for optimal control problems with state constraints. Nonlinear Differ. Equ. Appl. 20 361–383 2013 | MR | Zbl

[21] H. Frankowska and F. Rampazzo, Filippov’s and Filippov-Wazewski’s theorems on closed domains. J. Differential Equations 161 449–478 2000 | MR | Zbl

[22] H. Frankowska and R.B. Vinter, Existence of neighbouring feasible trajectories: Applications to dynamic programming for state constrained optimal control problems. J. Optim. Theory Appl. 104 21–40 2000 | MR | Zbl

[23] C.G. Gal, G.R. Goldstein and J.A. Goldstein, Oscillatory boundary conditions for acoustic wave equations. J. Evol. Equ. 3 623–635 2003 | MR | Zbl

[24] G.R. Goldstein, Derivation and physical interpretation of general boundary conditions. Adv. Diff. Eqs. 11 457–480 2006 | MR | Zbl

[25] P.M. Moser, Theoretical acoustics. McGraw Hill New York (1968)

[26] E.M. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups. Potential Anal. 5 611–625 1996 | MR | Zbl

[27] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer Verlag New York (1983) | DOI | MR | Zbl

[28] H.M. Soner, Optimal control with state-space constraints. SIAM J. Control Optim. 24 552–561 1986 | MR | Zbl

[29] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics. Springer New York (1997) | DOI | MR | Zbl

[30] J.L. Vazquez, E. Vitillaro, Heat equation with dynamical boundary conditions of locally reactive type. Semigroup Forum 74 1–40 2007 | MR | Zbl

Cité par Sources :