Existence and multiplicity of solutions for a class of quasilinear elliptic field equation on ℝN
ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 3, pp. 1231-1248.

In this paper, we establish existence and multiplicity of solutions for the following class of quasilinear field equation - Δ u + V ( x ) u - Δ p u + W ' ( u ) = 0 , N ,

where u = ( u 1 , u 2 , ... , u N + 1 ) , p > N 2 , W is a singular function and  V is a positive continuous function.

DOI: 10.1051/cocv/2017045
Classification: 35J60, 35A15
Keywords: Nonlinear elliptic equations, variational methods
Alves, Claudianor O. 1; dos Santos, Alan C.B. 1

1
@article{COCV_2018__24_3_1231_0,
     author = {Alves, Claudianor O. and dos Santos, Alan C.B.},
     title = {Existence and multiplicity of solutions for a class of quasilinear elliptic field equation on {\ensuremath{\mathbb{R}}\protect\textsuperscript{N}}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1231--1248},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017045},
     zbl = {1410.35049},
     mrnumber = {3877200},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017045/}
}
TY  - JOUR
AU  - Alves, Claudianor O.
AU  - dos Santos, Alan C.B.
TI  - Existence and multiplicity of solutions for a class of quasilinear elliptic field equation on ℝN
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1231
EP  - 1248
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017045/
DO  - 10.1051/cocv/2017045
LA  - en
ID  - COCV_2018__24_3_1231_0
ER  - 
%0 Journal Article
%A Alves, Claudianor O.
%A dos Santos, Alan C.B.
%T Existence and multiplicity of solutions for a class of quasilinear elliptic field equation on ℝN
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1231-1248
%V 24
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017045/
%R 10.1051/cocv/2017045
%G en
%F COCV_2018__24_3_1231_0
Alves, Claudianor O.; dos Santos, Alan C.B. Existence and multiplicity of solutions for a class of quasilinear elliptic field equation on ℝN. ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 3, pp. 1231-1248. doi : 10.1051/cocv/2017045. http://archive.numdam.org/articles/10.1051/cocv/2017045/

[1] M. Badiale, V. Benci and T. D’Aprile, Existence, multiplicity and concentration of bound states for a quasilinear elliptic field equation. Calc. Var. 12 (2001) 223–258 | DOI | MR | Zbl

[2] M. Badiale, V. Benci and T. D’Aprile, Semiclassical limit for a quasilinear elliptic field equation: One-Peak and Multi-Peak solutions. Adv. Differ. Equ. 6 (2001) 385–418 | MR | Zbl

[3] T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on ℝN. Commun. Partial Differ. Equ. 20 (1995) 1725–1741 | DOI | MR | Zbl

[4] T. Bartsch and Z.Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on ℝN. Commun. Partial Differ. Equ. 20 (1995) 1725–1741 | DOI | MR | Zbl

[5] T. Bartsch and Z.Q. Wang, Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51 (2000) 366–384 | DOI | MR | Zbl

[6] V. Benci, P. D’Avenia, D. Fortunato and L. Pisani, Solitons in several space dimensions: Derrick’s problem and infinitely solutions.Arch. Rational Mech. Anal. 154 (2000) 297–324 | DOI | MR | Zbl

[7] V. Benci, D. Fortunato and L. Pisani, Remarks on topological solitons. Topol. Methods Nonlinear Anal. 7 (1996) 349–367 | DOI | MR | Zbl

[8] V. Benci, D. Fortunato and L. Pisani, Soliton like solutions of a Lorentz invariant equation in dimension 3. Rev. Math. Phys. 6 (1998) 315–344 | DOI | MR | Zbl

[9] V.Benci, A.M. Micheletti and D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation. J. Differ. Equ. 184 (2002) 299–320 | DOI | MR | Zbl

[10] V. Benci, A.M. Micheletti and D. Visetti, An eigenvalue problem for a quasilinear elliptic field equation on ℝN. Topol. Methods Nonl. Anal. 17 (2001) 191–211 | MR | Zbl

[11] V. Benci,D. Fortunato, A. Masiello and L. Pisani, Solitons and electromagnetic field. Math. Z. 232 (1999) 349–367 | DOI | MR | Zbl

[12] D.G. Costa, On a class of elliptic systems in ℝN. Electron. J. Differ. Equ. 1994 (1994) 1–14 | MR | Zbl

[13] T. D’Aprile, Behaviour of symmetric solutions of a nonlinear elliptic field equation in the semi-classical limit: Concentration around a circle. Electron. J. Differ. Equ. 2000 (2000) 1–40 | MR | Zbl

[14] T. D’Aprile, Semiclassical states for a class of nonlinear elliptic field equations. Asymptot. Anal. 37 (2004) 109–141 | MR | Zbl

[15] T. D’Aprile, Some results on a nonlinear elliptic field equation involving the p-Laplacian. Nonlinear Anal. 47 (2001) 5979–5989 | DOI | MR | Zbl

[16] T. D’Aprile, Existence and concentration of local mountain-passes for a nonlinear elliptic field equation in the semiclassical limit. Topol. Methods Nonlinear Anal. 17 (2001) 239–276 | DOI | MR | Zbl

[17] V. Kondratev and M. Shubin, Discreteness of spectrum for the Schrödinger operators on manifolds of bounded geometry, in: The Mazya Anniversary Collection, Operator Theory: Advances and Applications, vol 110. Birkhäuser, Basel (1999) 185–226 | MR | Zbl

[18] W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems. Differ. Integral Equ. 5 (1992) 1115–1120 | MR | Zbl

[19] D. Visetti, Multiplicity of symmetric solutions for a nonlinear eigenvalue problem in ℝN. Eletron. J. Differ. Equ. 2005 (2005) | MR | Zbl

[20] M. Musso, New nonlinear equations with soliton-like solutions. Lett. Math. Phys. 57 (2001) 161–173 | DOI | MR | Zbl

[21] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations. Z. Angew Math. Phys. 43 (1992) 270–291 | DOI | MR | Zbl

Cited by Sources: