A risk-sensitive maximum principle for a Markov regime-switching jump-diffusion system and applications
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 985-1013.

In this paper, we derive a general stochastic maximum principle for a risk-sensitive type optimal control problem of Markov regime-switching jump-diffusion model. The results are obtained via a logarithmic transformation and the relationship between adjoint variables and the value function. We apply the results to study both a linear-quadratic optimal control problem and a risk-sensitive benchmarked asset management problem for Markov regime-switching models. In the latter case, the optimal control is of feedback form and is given in terms of solutions to a Markov regime-switching Riccatti equation and an ordinary Markov regime-switching differential equation.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017039
Classification : 93E20, 91G80
Mots-clés : Risk-sensitive control, Regime-switching, Jump-diffusion, Stochastic maximum principle, Asset management
Sun, Zhongyang 1 ; Kemajou-Brown, Isabelle 1 ; Menoukeu-Pamen, Olivier 1

1
@article{COCV_2018__24_3_985_0,
     author = {Sun, Zhongyang and Kemajou-Brown, Isabelle and Menoukeu-Pamen, Olivier},
     title = {A risk-sensitive maximum principle for a {Markov} regime-switching jump-diffusion system and applications},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {985--1013},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {3},
     year = {2018},
     doi = {10.1051/cocv/2017039},
     mrnumber = {3877190},
     zbl = {1405.93234},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017039/}
}
TY  - JOUR
AU  - Sun, Zhongyang
AU  - Kemajou-Brown, Isabelle
AU  - Menoukeu-Pamen, Olivier
TI  - A risk-sensitive maximum principle for a Markov regime-switching jump-diffusion system and applications
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 985
EP  - 1013
VL  - 24
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017039/
DO  - 10.1051/cocv/2017039
LA  - en
ID  - COCV_2018__24_3_985_0
ER  - 
%0 Journal Article
%A Sun, Zhongyang
%A Kemajou-Brown, Isabelle
%A Menoukeu-Pamen, Olivier
%T A risk-sensitive maximum principle for a Markov regime-switching jump-diffusion system and applications
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 985-1013
%V 24
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017039/
%R 10.1051/cocv/2017039
%G en
%F COCV_2018__24_3_985_0
Sun, Zhongyang; Kemajou-Brown, Isabelle; Menoukeu-Pamen, Olivier. A risk-sensitive maximum principle for a Markov regime-switching jump-diffusion system and applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 3, pp. 985-1013. doi : 10.1051/cocv/2017039. http://archive.numdam.org/articles/10.1051/cocv/2017039/

[1] H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati Equations in Control and Systems Theory. Springer, Basel-Boston-Berlin (2003) | DOI | MR | Zbl

[2] T.R. Bielecki and S.R. Pliska, Risk-sensitive dynamic asset management. Appl. Math. Optimiz. 39 (1999) 337–360 | DOI | MR | Zbl

[3] D. Charalambous and J.L. Hibey, Minimum principle for partially observable nonlinear risk-sensitive control problems using measure-valued decompositions. Stochastics. 57 (1996) 247–288 | MR | Zbl

[4] M.C. Chiu and H.Y. Wong, Mean-variance principle of managing cointegrated risky assets and random liabilities. Oper. Res. Lett. 41 (2013) 98–106 | DOI | MR | Zbl

[5] S. Crepey, About the Pricing Equations in Finance. Springer, Berlin (2010) | MR | Zbl

[6] M. Davis and S. Lleo, Risk-sensitive benchmarked asset management. Quant. Financ. 8 (2008) 415–426 | DOI | MR | Zbl

[7] M. Davis and S. Lleo, Jump-diffusion risk-sensitive asset management I: diffusion factor model. SIAM J. Financ. Math. 2 (2011) 22–54 | DOI | MR | Zbl

[8] M. Davis and S. Lleo, Jump-diffusion risk-sensitive asset management II: jump-diffusion factor model. SIAM J. Control. Optimiz. 51 (2013) 1441–1480 | DOI | MR | Zbl

[9] C. Donnelly, Sufficient stochastic maximum principle in a regime-switching diffusion model. Appl. Math. Optimiz. 64 (2011) 155–169 | DOI | MR | Zbl

[10] C. Donnelly and A.J. Heunis, Quadratic risk minimization in a regime-switching model with portfolio constraints. SIAM J. Control. Optimiz. 50 (2012) 2431–2461 | DOI | MR | Zbl

[11] R.J. Elliott, L. Aggoun and J.B. Moore, Hidden Markov Models: Estimation and Control. Springer, New York (1994) | MR | Zbl

[12] R.J. Elliott and T.K. Siu, A stochastic differential game for optimal investment of an insurer with regime switching. Quant. Financ. 11 (2011) 365–380 | DOI | MR | Zbl

[13] Y. Li and H. Zheng, Weak necessary and sufficient stochastic maximum principle for markovian regime-switching diffusion models. Appl. Math. Optimiz. 71 (2013) 1–39 | MR

[14] A.E.B. Lim and X.Y. Zhou, A new risk-sensitive maximum principle. IEEE T. Automat. Control. 50 (2005) 958–966 | DOI | MR | Zbl

[15] O. Menoukeu-Pamen, Maximum principles of Markov regime-switching forward backward stochastic differential equations with jumps and partial information. (2014) | arXiv

[16] O. Menoukeu-Pamen and R. Momeya, A maximum principle for Markov regime-switching forward-backward stochastic differential games and applications. Math. Meth. Oper. Res. 85 (2017) 349–388 | DOI | MR | Zbl

[17] H. Nagai and S. Peng, Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon. Ann. Appl. Probab. 12 (2002) 173–195 | DOI | MR | Zbl

[18] Y. Shen, X. Zhang and T.K. Siu, Mean-variance portfolio selection under a constant elasticity of variance model. Oper. Res. Lett. 42 (2014) 337–342 | DOI | MR | Zbl

[19] J. Shi and Z. Wu, A risk-sensitive stochastic maximum principle for optimal control of jump diffusions and its applications. Acta. Math. Sci. 31 (2011) 419–433 | DOI | MR | Zbl

[20] Z. Sun, Maximum principle for forward-backward stochastic control system under G-expectation and relation to dynamic programming. J. Comput. Appl. Math. 296 (2016) 753–775 | DOI | MR | Zbl

[21] Z. Sun, J. Guo and X. Zhang, Maximum principle for Markov regime-switching forward-backward stochastic control system with jumps and relation to dynamic programming. J. Optimiz. Theory. Appl. DOI: (2017) | DOI | MR

[22] S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control. Optimiz. 32 (1994) 1447–1475 | DOI | MR | Zbl

[23] P. Whittle, Risk-Sensitive Optimal Control. Wiley, New York (1990) | MR | Zbl

[24] Q. Zhang, Stock trading: an optimal selling rule. SIAM J. Control. Optimiz. 40 (2001) 64–87 | DOI | MR | Zbl

[25] X. Zhang, R.J. Elliott and T.K. Siu, A stochastic maximum principle for a markov regime-switching jump-diffusion model and its application to finance. SIAM J. Control. Optimiz. 50 (2012) 964–990 | DOI | MR | Zbl

Cité par Sources :