Existence result for degenerate cross-diffusion system with application to seawater intrusion
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1735-1758.

In this paper we study a degenerate parabolic system, which is strongly coupled. We prove general existence result, but the uniqueness question remains open. Our proof of existence is based on a crucial entropy estimate which controls the gradient of the solution together with its non-negativity. Our system is of porous medium type which is applicable to models in seawater intrusion.

Reçu le :
Accepté le :
DOI : 10.1051/cocv/2017058
Classification : 35K65, 35B10, 35D30, 33K40, 35Q35
Mots-clés : Degenerate parabolic system, entropy estimate, porous medium like systems
Alkhayal, Jana 1 ; Issa, Samar 1 ; Jazar, Mustapha 1 ; Monneau, Régis 1

1
@article{COCV_2018__24_4_1735_0,
     author = {Alkhayal, Jana and Issa, Samar and Jazar, Mustapha and Monneau, R\'egis},
     title = {Existence result for degenerate cross-diffusion system with application to seawater intrusion},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1735--1758},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017058},
     zbl = {1410.35106},
     mrnumber = {3922430},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017058/}
}
TY  - JOUR
AU  - Alkhayal, Jana
AU  - Issa, Samar
AU  - Jazar, Mustapha
AU  - Monneau, Régis
TI  - Existence result for degenerate cross-diffusion system with application to seawater intrusion
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1735
EP  - 1758
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017058/
DO  - 10.1051/cocv/2017058
LA  - en
ID  - COCV_2018__24_4_1735_0
ER  - 
%0 Journal Article
%A Alkhayal, Jana
%A Issa, Samar
%A Jazar, Mustapha
%A Monneau, Régis
%T Existence result for degenerate cross-diffusion system with application to seawater intrusion
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1735-1758
%V 24
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017058/
%R 10.1051/cocv/2017058
%G en
%F COCV_2018__24_4_1735_0
Alkhayal, Jana; Issa, Samar; Jazar, Mustapha; Monneau, Régis. Existence result for degenerate cross-diffusion system with application to seawater intrusion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1735-1758. doi : 10.1051/cocv/2017058. http://archive.numdam.org/articles/10.1051/cocv/2017058/

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows: in metric spaces and in the space of probability measures. Springer Science and Business Media (2008) | MR | Zbl

[2] J. Bear, A.H.-D. Cheng, Sh. Sorek, D. Ouazar and I. Herrera, Seawater intrusion in coastal aquifers: concepts, methods and practices, volume 14. Springer Science & Business Media (1999)

[3] H. Brezis, Ph.G. Ciarlet and J.L. Lions, Analyse Fonctionnelle: théorie et Applications, volume 91. Dunod Paris (1999)

[4] L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004) 301–322 | DOI | MR | Zbl

[5] L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ. 224 (2006) 39–59 | DOI | MR | Zbl

[6] X. Chen, A. Jüngel and J.-G. Liu, A note on Aubin-Lions-Dubinskiĭ lemmas. Acta Appl. Math. 133 (2014) 33–43 | DOI | MR | Zbl

[7] Y.S. Choi, Zh. Huan and R. Lui, Global existence of solutions of a strongly coupled quasilinear parabolic system with applications to electrochemistry. J. Differ. Equ. 194 (2003) 406–432 | DOI | MR | Zbl

[8] L Corrias, B Perthame and H Zaag, A chemotaxis model motivated by angiogenesis. C. R. Math. 336 (2003) 141–146 | DOI | MR | Zbl

[9] M. Dreher and A. Jüngel, Compact families of piecewise constant functions in Lp(0, T;B). Nonlin. Anal.: Theory, Methods Appl. 75 (2012) 3072–3077 | DOI | MR | Zbl

[10] J. Escher, Ph. Laurencot and B.-V. Matioc, Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 28 (2011) 583–598 | DOI | Numdam | MR | Zbl

[11] J. Escher, A.-V. Matioc and B.-V. Matioc, Modelling and analys of the Muskat problem for thin fluid layers. J. Math. Fluid Mech. 14 (2012) 267–277 | DOI | MR | Zbl

[12] J. Escher and B.-V. Matioc, Existence and stability of solutions for a strongly coupled system modelling thin fluid films. Nonl. Differ. Equ. Appl. NoDEA 20 (2013) 539–555 | DOI | MR | Zbl

[13] L.C. Evans, Partial differential equations. Graduate Studies Math. 19 (1998) | MR | Zbl

[14] G. Galiano, M.L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math. 93 (2003) 655–673 | DOI | MR | Zbl

[15] Th. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26 (2001) 280–301 | DOI | MR | Zbl

[16] M. Jazar and R. Monneau, Derivation of seawater intrusion models by formal asymptotics. SIAM J. Appl. Math. 74 (2014) 1152–1173 | DOI | MR | Zbl

[17] J.U. Kim, Smooth solutions to a quasi-linear system of diffusion equations for a certain population model. Technical report, DTIC Document (1983) | MR

[18] Ph. Laurençot and B.-V. Matioc, A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Equ. 47 (2013) 319–341 | DOI | MR | Zbl

[19] Ph. Laurencot and B.-V. Matioc, A thin film approximation of the Muskat problem with gravity and capillary forces. J. Math. Soc. Jpn 66 (2014) 1043–1071 | DOI | MR | Zbl

[20] Th. Lepoutre, M. Pierre and G. Rolland, Global well-posedness of a conservative relaxed cross diffusion system. SIAM J. Math. Anal. 44 (2012) 1674–1693 | DOI | MR | Zbl

[21] C.C. Lin and L.A. Segel, Math. Appl. Deterministic Problems. SIAM (1974)

[22] J.-L. Lions and E. Magenes, Problemes aux limites non homogenes et applications. Vol. 1. Dunod, Springer Verlag New York Inc. (1968) | Zbl

[23] Y. Lou, W.-Ming Ni and Y. Wu, On the global existence of a cross-diffusion system. Discrete Contin. Dyn. Systems 4 (1998) 193–204 | DOI | MR | Zbl

[24] B.-V. Matioc, Non-negative global weak solutions for a degenerate parabolic system modelling thin films driven by capillarity. Proc. Royal Soc. Edinburgh: Section A Math. 142 (2012) 1071–1085 | DOI | MR | Zbl

[25] M. Assunta Pozio and A. Tesei, Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlin. Anal.: Theory, Methods Appl. 14 (1990) 657–689 | DOI | MR | Zbl

[26] R. Redlinger, Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics. J. Differ. Equ. 118 (1995) 219–252 | DOI | MR | Zbl

[27] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species. J. Theoretical Biology 79 (1979) 83–99 | DOI | MR

[28] S.-A. Shim, Uniform boundedness and convergence of solutions to the systems with cross-diffusions dominated by self-diffusions. Nonlin. Anal.: Real World Appl. 4 (2003) 65–86 | DOI | MR | Zbl

[29] J. Simon, Compact sets in the space Lp (0, T;B). Ann. Mat. Pura Appl. 146 (1986) 65–96 | DOI | MR | Zbl

[30] Z. Wen Sh. Fu, Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics. J. Comput. Appl. Math. 230 (2009) 34–43 | DOI | MR | Zbl

[31] A. Yagi, Global solution to some quasilinear parabolic system in population dynamics. Nonlin. Anal.: Theory, Methods Appl. 21 (1993) 603–630 | DOI | MR | Zbl

Cité par Sources :