In this paper we study a degenerate parabolic system, which is strongly coupled. We prove general existence result, but the uniqueness question remains open. Our proof of existence is based on a crucial entropy estimate which controls the gradient of the solution together with its non-negativity. Our system is of porous medium type which is applicable to models in seawater intrusion.
Accepté le :
DOI : 10.1051/cocv/2017058
Mots-clés : Degenerate parabolic system, entropy estimate, porous medium like systems
@article{COCV_2018__24_4_1735_0, author = {Alkhayal, Jana and Issa, Samar and Jazar, Mustapha and Monneau, R\'egis}, title = {Existence result for degenerate cross-diffusion system with application to seawater intrusion}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1735--1758}, publisher = {EDP-Sciences}, volume = {24}, number = {4}, year = {2018}, doi = {10.1051/cocv/2017058}, zbl = {1410.35106}, mrnumber = {3922430}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2017058/} }
TY - JOUR AU - Alkhayal, Jana AU - Issa, Samar AU - Jazar, Mustapha AU - Monneau, Régis TI - Existence result for degenerate cross-diffusion system with application to seawater intrusion JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2018 SP - 1735 EP - 1758 VL - 24 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2017058/ DO - 10.1051/cocv/2017058 LA - en ID - COCV_2018__24_4_1735_0 ER -
%0 Journal Article %A Alkhayal, Jana %A Issa, Samar %A Jazar, Mustapha %A Monneau, Régis %T Existence result for degenerate cross-diffusion system with application to seawater intrusion %J ESAIM: Control, Optimisation and Calculus of Variations %D 2018 %P 1735-1758 %V 24 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2017058/ %R 10.1051/cocv/2017058 %G en %F COCV_2018__24_4_1735_0
Alkhayal, Jana; Issa, Samar; Jazar, Mustapha; Monneau, Régis. Existence result for degenerate cross-diffusion system with application to seawater intrusion. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1735-1758. doi : 10.1051/cocv/2017058. http://archive.numdam.org/articles/10.1051/cocv/2017058/
[1] Gradient flows: in metric spaces and in the space of probability measures. Springer Science and Business Media (2008) | MR | Zbl
, and ,[2] Seawater intrusion in coastal aquifers: concepts, methods and practices, volume 14. Springer Science & Business Media (1999)
, , , and ,[3] Analyse Fonctionnelle: théorie et Applications, volume 91. Dunod Paris (1999)
, and ,[4] Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004) 301–322 | DOI | MR | Zbl
and ,[5] Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ. 224 (2006) 39–59 | DOI | MR | Zbl
and ,[6] A note on Aubin-Lions-Dubinskiĭ lemmas. Acta Appl. Math. 133 (2014) 33–43 | DOI | MR | Zbl
, and ,[7] Global existence of solutions of a strongly coupled quasilinear parabolic system with applications to electrochemistry. J. Differ. Equ. 194 (2003) 406–432 | DOI | MR | Zbl
, and ,[8] A chemotaxis model motivated by angiogenesis. C. R. Math. 336 (2003) 141–146 | DOI | MR | Zbl
, and ,[9] Compact families of piecewise constant functions in Lp(0, T;B). Nonlin. Anal.: Theory, Methods Appl. 75 (2012) 3072–3077 | DOI | MR | Zbl
and ,[10] Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media. Ann. Inst. Henri Poincaré (C) Non Lin. Anal. 28 (2011) 583–598 | DOI | Numdam | MR | Zbl
, and ,[11] Modelling and analys of the Muskat problem for thin fluid layers. J. Math. Fluid Mech. 14 (2012) 267–277 | DOI | MR | Zbl
, and ,[12] Existence and stability of solutions for a strongly coupled system modelling thin fluid films. Nonl. Differ. Equ. Appl. NoDEA 20 (2013) 539–555 | DOI | MR | Zbl
and ,[13] Partial differential equations. Graduate Studies Math. 19 (1998) | MR | Zbl
,[14] Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math. 93 (2003) 655–673 | DOI | MR | Zbl
, and ,[15] Global existence for a parabolic chemotaxis model with prevention of overcrowding. Adv. Appl. Math. 26 (2001) 280–301 | DOI | MR | Zbl
and ,[16] Derivation of seawater intrusion models by formal asymptotics. SIAM J. Appl. Math. 74 (2014) 1152–1173 | DOI | MR | Zbl
and ,[17] Smooth solutions to a quasi-linear system of diffusion equations for a certain population model. Technical report, DTIC Document (1983) | MR
,[18] A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Partial Differ. Equ. 47 (2013) 319–341 | DOI | MR | Zbl
and ,[19] A thin film approximation of the Muskat problem with gravity and capillary forces. J. Math. Soc. Jpn 66 (2014) 1043–1071 | DOI | MR | Zbl
and ,[20] Global well-posedness of a conservative relaxed cross diffusion system. SIAM J. Math. Anal. 44 (2012) 1674–1693 | DOI | MR | Zbl
, and ,[21] Math. Appl. Deterministic Problems. SIAM (1974)
and ,[22] Problemes aux limites non homogenes et applications. Vol. 1. Dunod, Springer Verlag New York Inc. (1968) | Zbl
and ,[23] On the global existence of a cross-diffusion system. Discrete Contin. Dyn. Systems 4 (1998) 193–204 | DOI | MR | Zbl
, and ,[24] Non-negative global weak solutions for a degenerate parabolic system modelling thin films driven by capillarity. Proc. Royal Soc. Edinburgh: Section A Math. 142 (2012) 1071–1085 | DOI | MR | Zbl
,[25] Global existence of solutions for a strongly coupled quasilinear parabolic system. Nonlin. Anal.: Theory, Methods Appl. 14 (1990) 657–689 | DOI | MR | Zbl
and ,[26] Existence of the global attractor for a strongly coupled parabolic system arising in population dynamics. J. Differ. Equ. 118 (1995) 219–252 | DOI | MR | Zbl
,[27] Spatial segregation of interacting species. J. Theoretical Biology 79 (1979) 83–99 | DOI | MR
, and ,[28] Uniform boundedness and convergence of solutions to the systems with cross-diffusions dominated by self-diffusions. Nonlin. Anal.: Real World Appl. 4 (2003) 65–86 | DOI | MR | Zbl
,[29] Compact sets in the space Lp (0, T;B). Ann. Mat. Pura Appl. 146 (1986) 65–96 | DOI | MR | Zbl
,[30] Global solutions to a class of multi-species reaction-diffusion systems with cross-diffusions arising in population dynamics. J. Comput. Appl. Math. 230 (2009) 34–43 | DOI | MR | Zbl
,[31] Global solution to some quasilinear parabolic system in population dynamics. Nonlin. Anal.: Theory, Methods Appl. 21 (1993) 603–630 | DOI | MR | Zbl
,Cité par Sources :