On two functionals involving the maximum of the torsion function
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1585-1604.

In this paper we investigate upper and lower bounds of two shape functionals involving the maximum of the torsion function. More precisely, we consider T(Ω)(M(Ω)Ω) and M(Ω)λ1(Ω), where Ω is a bounded open set of d with finite Lebesgue measure Ω,M(Ω) denotes the maximum of the torsion function, T(Ω) the torsion, and λ1(Ω) the first Dirichlet eigenvalue. Particular attention is devoted to the subclass of convex sets.

DOI : 10.1051/cocv/2017069
Classification : 35P15, 49R05, 35J25, 35B27, 49Q10
Mots-clés : Torsional rigidity, first Dirichlet eigenvalue, shape optimization
Henrot, Antoine 1 ; Lucardesi, Ilaria 1 ; Philippin, Gérard 1

1
@article{COCV_2018__24_4_1585_0,
     author = {Henrot, Antoine and Lucardesi, Ilaria and Philippin, G\'erard},
     title = {On two functionals involving the maximum of the torsion function},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1585--1604},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017069},
     mrnumber = {3922448},
     zbl = {1442.35281},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017069/}
}
TY  - JOUR
AU  - Henrot, Antoine
AU  - Lucardesi, Ilaria
AU  - Philippin, Gérard
TI  - On two functionals involving the maximum of the torsion function
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1585
EP  - 1604
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017069/
DO  - 10.1051/cocv/2017069
LA  - en
ID  - COCV_2018__24_4_1585_0
ER  - 
%0 Journal Article
%A Henrot, Antoine
%A Lucardesi, Ilaria
%A Philippin, Gérard
%T On two functionals involving the maximum of the torsion function
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1585-1604
%V 24
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017069/
%R 10.1051/cocv/2017069
%G en
%F COCV_2018__24_4_1585_0
Henrot, Antoine; Lucardesi, Ilaria; Philippin, Gérard. On two functionals involving the maximum of the torsion function. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1585-1604. doi : 10.1051/cocv/2017069. http://archive.numdam.org/articles/10.1051/cocv/2017069/

[1] H. Bueno and G. Ercole, Solutions of the Cheeger problem via torsion functions. J. Math. Anal. Appl. 381 (2011) 263–279 | DOI | MR | Zbl

[2] D. Bucur and G. Buttazzo, Variational methods in shape optimization problems. Progress Nonlin. Differ. Equ. Appl. 65. Birkhäuser. Boston (2005) | MR | Zbl

[3] D. Cioranescu and F. Murat, A strange term coming from nowhere. Topics in the mathematical modelling of composite materials. Progr. Nonlin. Differ. Equ. Appl. 31 (1997) 45–93. Birkhuser, Boston. | MR | Zbl

[4] G. Dal Maso, An introduction to Γ-convergence, In Vol. 8 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1993) | MR | Zbl

[5] F. Della Pietra, N. Gavitone and S. Guarino Lo Bianco On functionals involving the torsional rigidity related to some classes of nonlinear operators. Preprint (2017) | arXiv | MR | Zbl

[6] M. Flucher, Approximation of Dirichlet eigenvalues on domains with small holes. J. Math. Anal. Appl. 193 (1995) 169–199 | DOI | MR | Zbl

[7] A. Henrot, Extremum problems for eigenvalues of elliptic operators. Birkhäuser, Basel (2006) | MR | Zbl

[8] A. Henrot and M. Pierre, Variation et Optimisation de Formes. Une Analyse Géométrique. In Vol. 48 of Mathématiques et Applications. Springer, Berlin (2005) | MR | Zbl

[9] H. Kacimi and F. Murat, Estimation de l’erreur dans des problèmes de Dirichlet où apparait un terme étrange, Partial differential equations and the calculus of variations. Vol. II. In Vol. 2 of Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser, Boston (1989) 661–696 | MR | Zbl

[10] A.U. Kennington, Power concavity and boundary value problems. Indiana Univ. Math. J. 34 (1985) 687–704 | DOI | MR | Zbl

[11] N.J. Korevaar and J.L. Lewis, Convex solutions of certain elliptic equations have constant rank Hessians. Arch. Ration. Mech. Anal. 97 (1987) 19–32 | DOI | MR | Zbl

[12] A.A. Kosmodem’Yanskii, Sufficient conditions for the concavity of the solution of the Dirichlet problem for the equation Δu = −1. Mat. Zametki 42 (1987) 537–542 | MR | Zbl

[13] L.G. Makar–Limanov, Solution of the Dirichlet’s problem for the equation Δu = −1 in a convex region. Math. Notes Akademy Sci. USSR 9 (1971) 52–53 | MR | Zbl

[14] V. Maz’Ya, S. Nazarov and B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. 1. Birkhäuser, Basel (2000) | MR | Zbl

[15] L.E. Payne, Bounds for the maximum Stress in the St-Venant problem, special issue in honor of B. Sen. Part 1. Indian J. Mech. Math. (1968) 51–59 | MR

[16] L.E. Payne, Bounds for solutions of a class of quasilinear elliptic boundary value problems in terms of the torsion function. Proc. Roy. Soc. Edinburgh Sect. A 88 (1981) 251–265 | DOI | MR | Zbl

[17] L.E. Payne, Some special maximum principles with applications to isoperimetric inequalities, Maximum principles and eigenvalue problems in partial differential equations. In Vol 175 of Pitman Research Notes in Math. Edited by P.W. Schaefer. Longman (1988). | MR | Zbl

[18] L.E. Payne and G.A. Philippin, Some remarks on the problems of elastic torsion and of torsional creep, Some Aspects of Mechanics of Continua. Part 1. Jadavpur University (1977) 32–40

[19] L.E. Payne and G.A. Philippin, Isoperimetric inequalities in the torsion and clamped membrane problems for convex plane domains. SIAM J. Math. Anal. 14 (1983) 1154–1162 | DOI | MR | Zbl

[20] G.A. Philippin and G. Porru, Isoperimetric inequalities and overdetermined problems for the Saint–Venant equation. New Zealand J. Math. 25 (1996) 217–227 | MR | Zbl

[21] G.A. Philippin and A. Safoui, On extending some maximum principles to convex domains with nonsmooth boundaries. Math. Methods Appl. Sci. 33 (2010) 1850–1855 | DOI | MR | Zbl

[22] M. Van Den Berg, Estimates for the Torsion Function and Sobolev Constants. Potential Anal. 36 (2012) 607–616 | DOI | MR | Zbl

[23] M. Van Den Berg, Spectral bounds for the torsion function. Preprint (2017) | arXiv | MR | Zbl

[24] M. Van Den Berg and D. Bucur, On the torsion function with Robin or Dirichlet boundary conditions. J. Funct. Anal. 266 (2014) 1647–1666 | DOI | MR | Zbl

[25] M. Van Den Berg, G. Buttazzo and B. Velichkov, Optimization problems involving the first Dirichlet eigenvalue and the torsional rigidity, New trends in shape optimization. In Vol. 166 of International Series of Numerical Mathematics. Birkh?user/ Springer, Cham (2015) 19–41 | DOI | MR | Zbl

[26] M. Van Den Berg and T. Carroll, Hardy inequality and Lp estimates for the torsion function. Bull. Lond. Math. Soc. 41 (2009) 980–986 | DOI | MR | Zbl

[27] M. Van Den Berg, V. Ferone, C. Nitsch and C. Trombetti, On Pólya’s Inequality for Torsional Rigidity and First Dirichlet Eigenvalue. Integr. Equ. Oper. Theory 86 (2016) 579–600 | DOI | MR | Zbl

[28] B. Velichkov, Existence and regularity results for some shape optimization problems. In Vol. 19 of Theses, Scuola Normale Superiore di Pisa (Nuova Serie). Edizioni della Normale, Pisa (2015) | MR | Zbl

[29] H. Vogt, L-estimates for the torsion function and L -growth of semigroups satisfying Gaussian bounds. Preprint (2018) | arXiv | MR

Cité par Sources :