Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions
ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1625-1644.

For 1 < p < , we consider the following problem Δ p u = f ( u ) , u > 0 in Ω , ν u = 0 on Ω

where Ω N is either a ball or an annulus. The nonlinearity f is possibly supercritical in the sense of Sobolev embeddings; in particular our assumptions allow to include the prototype nonlinearity f ( s ) = - s p - 1 + s q - 1 for every q > p . We use the shooting method to get existence and multiplicity of non-constant radial solutions. With the same technique, we also detect the oscillatory behavior of the solutions around the constant solution u 1 . In particular, we prove a conjecture proposed in [D. Bonheure, B. Noris and T. Weth, Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 573−588], that is to say, if p = 2 and f ' ( 1 ) > λ k + 1 rad , with λ k + 1 rad the ( k + 1 ) -th radial eigenvalue of the Neumann Laplacian, there exists a radial solution of the problem having exactly k intersections with u 1 , for a large class of nonlinearities.

DOI : 10.1051/cocv/2017074
Classification : 35J92, 35A24, 35B05, 35B09
Mots-clés : Quasilinear elliptic equations, Shooting method, Sobolev-supercritical nonlinearities, Neumann boundary, conditions
Boscaggin, Alberto 1 ; Colasuonno, Francesca 1 ; Noris, Benedetta 1

1
@article{COCV_2018__24_4_1625_0,
     author = {Boscaggin, Alberto and Colasuonno, Francesca and Noris, Benedetta},
     title = {Multiple positive solutions for a class of {p-Laplacian} {Neumann} problems without growth conditions},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1625--1644},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2017074},
     zbl = {1419.35072},
     mrnumber = {3922442},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2017074/}
}
TY  - JOUR
AU  - Boscaggin, Alberto
AU  - Colasuonno, Francesca
AU  - Noris, Benedetta
TI  - Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1625
EP  - 1644
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2017074/
DO  - 10.1051/cocv/2017074
LA  - en
ID  - COCV_2018__24_4_1625_0
ER  - 
%0 Journal Article
%A Boscaggin, Alberto
%A Colasuonno, Francesca
%A Noris, Benedetta
%T Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1625-1644
%V 24
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2017074/
%R 10.1051/cocv/2017074
%G en
%F COCV_2018__24_4_1625_0
Boscaggin, Alberto; Colasuonno, Francesca; Noris, Benedetta. Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 24 (2018) no. 4, pp. 1625-1644. doi : 10.1051/cocv/2017074. http://archive.numdam.org/articles/10.1051/cocv/2017074/

[1] Adimurthi and S.L. Yadava, Existence and nonexistence of positive radial solutions of Neumann problems with critical Sobolev exponents. Arch. Rational Mech. Anal. 115 (1991) 275–296 | DOI | MR | Zbl

[2] Adimurthi and S.L. Yadava, Nonexistence of positive radial solutions of a quasilinear Neumann problem with a critical Sobolev exponent. Arch. Rational Mech. Anal. 139 (1997) 239–253 | DOI | MR | Zbl

[3] V. Barutello, S. Secchi and E. Serra, A note on the radial solutions for the supercritical Hénon equation. J. Math. Anal. Appl. 341 (2008) 720–728 | DOI | MR | Zbl

[4] D. Bonheure, J.-B. Casteras and B. Noris, Layered solutions with unbounded mass for the Keller-Segel equation. J. Fixed Point Theory App. 19 (2017) 529–558 | DOI | MR | Zbl

[5] D. Bonheure, J.-B. Casteras and B. Noris, Multiple positive solutions of the stationary Keller-Segel system. Calc. Var. 56 (2017) 56–74 | DOI | MR | Zbl

[6] D. Bonheure, M. Grossi, B. Noris and S. Terracini, Multi-layer radial solutions for a supercritical Neumann problem. J. Differ. Equ. 261 (2016) 455–504 | DOI | MR | Zbl

[7] D. Bonheure, Ch. Grumiau and Ch. Troestler, Multiple radial positive solutions of semilinear elliptic problems with Neumann boundary conditions. Nonlin. Anal. 147 (2016) 236–273 | DOI | MR | Zbl

[8] D. Bonheure, B. Noris and T. Weth, Increasing radial solutions for Neumann problems without growth restrictions. Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 573–588 | DOI | Numdam | MR | Zbl

[9] D. Bonheure and E. Serra, Multiple positive radial solutions on annuli for nonlinear Neumann problems with large growth. NoDEA Nonlin. Differ. Equ. Appl. 18 (2011) 217–235 | DOI | MR | Zbl

[10] D. Bonheure, E. Serra and P. Tilli, Radial positive solutions of elliptic systems with Neumann boundary conditions. J. Funct. Anal. 265 (2013) 375–398 | DOI | MR | Zbl

[11] A. Boscaggin, F. Colasuonno and B. Noris, A priori bounds and multiplicity of positive solutions for p-Laplacian Neumann problems with sub-critical growth. Preprint (2018) | arXiv | MR | Zbl

[12] A. Boscaggin and F. Zanolin, Pairs of nodal solutions for a class of nonlinear problems with one-sided growth conditions. Adv. Nonlin. Study 13 (2013) 13–53 | DOI | MR | Zbl

[13] H. Brezis, Nonlinear elliptic equations involving the critical Sobolev exponent—survey and perspectives. In Directions in partial differential equations (Madison, WI, 1985). Vol. 54 of Publ. Math. Res. Center Univ. Wisconsin. Academic Press, Boston, MA (1987) 17–36 | MR | Zbl

[14] C. Budd, M.C. Knaap and L.A. Peletier, Asymptotic behavior of solutions of elliptic equations with critical exponents and Neumann boundary conditions. Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 225–250 | DOI | MR | Zbl

[15] F. Colasuonno, A p-Laplacian Neumann problem with a possibly supercritical nonlinearity. Rend. Sem. Mat. Univ. Pol. Torino 74 (2016) 113–122 | MR | Zbl

[16] F. Colasuonno and B. Noris, A p-Laplacian supercritical Neumann problem. Discrete Contin. Dyn. Syst. 37 (2017) 3025–3057 | DOI | MR | Zbl

[17] F. Colasuonno and B. Noris, Radial positive solutions for p-Laplacian supercritical Neumann problems. Preprint (2017) | arXiv | MR | Zbl

[18] C. Cowan and A. Moameni, A new variational principle, convexity and supercritical Neumann problems. Trans. Amer. Math. Soc. (2017) | MR | Zbl

[19] M. Del Pino, M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|p−2u′)′ + f(t, u) = 0, u(0) = u(T) = 0, p > 1.. J. Differ. Equ. 80 (1989) 1–13 | DOI | MR | Zbl

[20] M. Del Pino, M. Musso, C. Román and J. Wei, Interior bubbling solutions for the critical Lin-Ni-Takagi problem in dimension 3. Preprint (2015) | arXiv | MR | Zbl

[21] M. Del Pino, A. Pistoia and G. Vaira, Large mass boundary condensation patterns in the stationary Keller-Segel system. J. Differ. Equ. 261 (2016) 3414–3462 | DOI | MR | Zbl

[22] M.A. Del Pino, R.F. Manásevich and A.E. Murúa, Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlin. Anal. 18 (1992) 79–92 | DOI | MR | Zbl

[23] E.J. Doedel and B.E. Oldeman, Auto-07p: Continuation and bifurcation software for ordinary differential equations. Concordia University. Available at: http://cmvl.cs.concordia.ca/auto/ (2012)

[24] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities. Rend. Istit. Mat. Univ. Trieste 24 (1994) 207–227, 1992 | MR | Zbl

[25] B. Franchi, E. Lanconelli and J. Serrin, Existence and uniqueness of nonnegative solutions of quasilinear equations in R n. Adv. Math. 118 (1996) 177–243 | DOI | MR | Zbl

[26] M. Grossi and B. Noris, Positive constrained minimizers for supercritical problems in the ball. Proc. Amer. Math. Soc. 140 (2012) 2141–2154 | DOI | MR | Zbl

[27] J.K. Hale, Ordinary differential equations. Pure Appl. Math. Vol. XXI. Wiley-Interscience, New York-London-Sydney (1969) | MR | Zbl

[28] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations. Nonl. Anal. 12 (1988) 1203–1219 | DOI | MR | Zbl

[29] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72 (1988) 1–27 | DOI | MR | Zbl

[30] Ch.Sh. Lin and W.-M. Ni, On the diffusion coefficient of a semilinear Neumann problem. In Calcul. Variat. Partial Differ. Eqs. Trento (1986). Vol. 1340 of Lect. Notes Math. Springer, Berlin (1988) 160–174 | MR | Zbl

[31] Y. Lu, T. Chen and R. Ma, On the Bonheure-Noris-Weth conjecture in the case of linearly bounded nonlinearities. Discrete Contin. Dyn. Syst. Ser. B 21 (2016) 2649–2662 | DOI | MR | Zbl

[32] R. Ma, T. Chen and H. Wang, Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions. J. Math. Anal. Appl. 443 (2016) 542–565 | DOI | MR | Zbl

[33] R. Ma, H. Gao and T. Chen, Radial positive solutions for Neumann problems without growth restrictions. Complex Var. Elliptic Equ. 62 (2017) 848–861 | DOI | MR | Zbl

[34] A. Malchiodi, Concentration at curves for a singularly perturbed Neumann problem in three-dimensional domains. Geom. Funct. Anal. 15 (2005) 1162–1222 | DOI | MR | Zbl

[35] A. Malchiodi, W.-M. Ni and J. Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball. Ann. Inst. Henri Poincaré Anal. Non Linéaire 22 (2005)143–163 | DOI | Numdam | MR | Zbl

[36] A. Malchiodi, Solutions concentrating at curves for some singularly perturbed elliptic problems. C.R. Math. Acad. Sci. Paris 338 (2004) 775–780 | DOI | MR | Zbl

[37] A. Malchiodi and M. Montenegro, Boundary concentration phenomena for a singularly perturbed elliptic problem. Commun. Pure Appl. Math. 55 (2002) 1507–1568 | DOI | MR | Zbl

[38] A. Malchiodi and M. Montenegro, Multidimensional boundary layers for a singularly perturbed Neumann problem. Duke Math. J. 124 (2004) 105–143 | DOI | MR | Zbl

[39] R. Manásevich, F.I. Njoku and F. Zanolin, Positive solutions for the one-dimensional p-Laplacian. Differ. Integral Equ. 8 (1995) 213–222 | MR | Zbl

[40] E. Montefusco and P. Pucci, Existence of radial ground states for quasilinear elliptic equations. Adv. Differ. Equ. 6 (2001) 959–986 | MR | Zbl

[41] A. Pistoia and G. Vaira, Steady states with unbounded mass of the Keller-Segel system. Proc. Roy. Soc. Edinburgh Sect. A 145 (2015) 203–222 | DOI | MR | Zbl

[42] C. Rebelo and F. Zanolin, On the existence and multiplicity of branches of nodal solutions for a class of parameter-dependent Sturm-Liouville problems via the shooting map. Differ. Integral Equ. 13 (2000) 1473–1502 | MR | Zbl

[43] W. Reichel and W. Walter, Radial solutions of equations and inequalities involving the p-Laplacian. J. Inequal. Appl. 1 (1997) 47–71 | MR | Zbl

[44] W. Reichel and W. Walter, Sturm-Liouville type problems for the p-Laplacian under asymptotic non-resonance conditions. J. Differ. Equ. 156 (1999) 50–70 | DOI | MR | Zbl

[45] S. Secchi, Increasing variational solutions for a nonlinear p-Laplace equation without growth conditions. Ann. Mat. Pura Appl. 191 (2012) 469–485 | DOI | MR | Zbl

[46] E. Serra and P. Tilli, Monotonicity constraints and supercritical Neumann problems. Ann. Inst. Henri Poincaré Anal. Non Linéaire 28 (2011) 63–74 | DOI | Numdam | MR | Zbl

[47] L. Wang, J. Wei and Sh. Yan, A Neumann problem with critical exponent in nonconvex domains and Lin-Ni’s conjecture. Trans. Amer. Math. Soc. 362 (2010) 4581–4615 | DOI | MR | Zbl

[48] P. Yan and M. Zhang, Rotation number, periodic Fučik spectrum and multiple periodic solutions. Commun. Contemp. Math. 12 (2010) 437–455 | DOI | MR | Zbl

Cité par Sources :