Normality and gap phenomena in optimal unbounded control
ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 4, pp. 1645-1673.

Optimal unbounded control problems with affine control dependence may fail to have minimizers in the class of absolutely continuous state trajectories. For this reason, extended impulsive versions – which cannot be of measure-theoretic type – have been investigated, in which the domain is enlarged to include discontinuous state trajectories of bounded variation, and for which existence of minimizers is guaranteed. It is of interest to know whether the passage from the original optimal control problem to its extension introduces an infimum gap. This paper provides sufficient conditions for the absence of an infimum gap based on normality of extremals. In certain cases, the normality conditions reduce to simple verifiable criteria, which improve on earlier, directly-derived sufficient conditions for no infimum gap.

Received:
Accepted:
DOI: 10.1051/cocv/2018069
Classification: 49N25, 34K45, 49K15
Keywords: Optimal control, maximum principle, impulsive control, gap phenomena
Motta, Monica 1; Rampazzo, Franco 1; Vinter, Richard 1

1
@article{COCV_2018__24_4_1645_0,
     author = {Motta, Monica and Rampazzo, Franco and Vinter, Richard},
     title = {Normality and gap phenomena in optimal unbounded control},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1645--1673},
     publisher = {EDP-Sciences},
     volume = {24},
     number = {4},
     year = {2018},
     doi = {10.1051/cocv/2018069},
     zbl = {1439.49061},
     mrnumber = {3922450},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2018069/}
}
TY  - JOUR
AU  - Motta, Monica
AU  - Rampazzo, Franco
AU  - Vinter, Richard
TI  - Normality and gap phenomena in optimal unbounded control
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2018
SP  - 1645
EP  - 1673
VL  - 24
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2018069/
DO  - 10.1051/cocv/2018069
LA  - en
ID  - COCV_2018__24_4_1645_0
ER  - 
%0 Journal Article
%A Motta, Monica
%A Rampazzo, Franco
%A Vinter, Richard
%T Normality and gap phenomena in optimal unbounded control
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2018
%P 1645-1673
%V 24
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2018069/
%R 10.1051/cocv/2018069
%G en
%F COCV_2018__24_4_1645_0
Motta, Monica; Rampazzo, Franco; Vinter, Richard. Normality and gap phenomena in optimal unbounded control. ESAIM: Control, Optimisation and Calculus of Variations, Volume 24 (2018) no. 4, pp. 1645-1673. doi : 10.1051/cocv/2018069. http://archive.numdam.org/articles/10.1051/cocv/2018069/

[1] M.S. Aronna and F. Rampazzo, L1 limit solutions for control systems. J. Differ. Equ. 258 (2015) 954–979 | DOI | MR | Zbl

[2] M.S. Aronna, M. Motta and F. Rampazzo, Infimum gaps for limit solutions. Set-Valued Var. Anal. 23 (2015) 3–22 | DOI | MR | Zbl

[3] A. Arutyunov, D. Karamzin and F. Pereira, Pontryagin’s maximum principle for constrained impulsive control problems. Nonlinear Anal. 75 (2012) 1045–1057 | DOI | MR | Zbl

[4] A. Arutyunov, D. Karamzin and F. Pereira, A nondegenerate maximum principle for the impulse control problem with state constraints. SIAM J. Control Optim. 43 (2005) 1812–1843 | DOI | MR | Zbl

[5] Ab D. Azimov and R. Bishop, New trends in astrodynamics and applications: optimal trajectories for space guidance. Ann. New York Acad. Sci. 1065 (2005) 189–209 | DOI

[6] J.F. Bonnans and, Perturbation Analysis of Optimization Problems. Springer, New York (2000) | DOI | MR | Zbl

[7] A.Bressan, F. Rampazzo, On differential systems with vector-valued impulsive controls. Boll. Un. Mat. Ital. B 2 (1988) 641–656 | MR | Zbl

[8] A. Bressan and B. Piccoli, Introduction to the mathematical theory of control. AIMS Series on Applied Mathematics, 2. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2007) | MR | Zbl

[9] A. Bressan and F. Rampazzo, Moving constraints as stabilizing controls in classical mechanics. Arch. Ration. Mech. Anal. 196 (2010) 97–141 | DOI | MR | Zbl

[10] A. Bressan, Hyper-impulsive motions and controllizable coordinates for Lagrangean systems. Atti Accad. Naz. Lincei, Memorie, Serie VIII XIX (1990) 197–246 | MR

[11] A. Bressan, On some control problems concerning the ski or swing. Atti Accad. Naz. Lincei, Memorie, Serie IX I (1991) 147–196 | MR | Zbl

[12] A. Catllá, D. Schaeffer, T. Witelski, E. Monson and A. Lin, On spiking models for synaptic activity and impulsive differential equations. SIAM Rev. 50 (2008) 553–569 | DOI | MR | Zbl

[13] F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, in Vol. 178 of Graduate Texts in Mathematics. Springer-Verlag, New York (1998) | MR | Zbl

[14] V.A. Dykhta, The variational maximum principle and quadratic conditions for the optimality of impulse and singular processes. Sibirsk. Mat. Zh. 35 (1994) 70–82, ii; translation in Siberian Math. J. 35 (1994) 65–76 | MR | Zbl

[15] V.A. Dykhta, Second order necessary optimality conditions for impulse control problem and multiprocesses. Singular solutions and perturbations in control systems (Pereslavl-Zalessky, 1997). IFAC Proc. Ser., IFAC, Laxenburg 1997 97–101 | DOI | MR

[16] A.L. Dontchev and T. Zolezzi, Well-posed optimization. Springer-Verlag, New York (1993) | DOI | MR

[17] Grr P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential batch reactors with bounded and impulse controls for one or more species. SIAM J. Control Optim. 47 (2008) 2827–2856 | DOI | MR | Zbl

[18] M. Guerra and A. Sarychev, Fréchet generalized trajectories and minimizers for variational problems of low coercivity. J. Dyn. Control Syst. 21 (2015) 351–377 | DOI | MR | Zbl

[19] O. Hájek, Discontinuous differential equations I. J. Differ. Equ. 32 (1979) 149–170 | DOI | MR | Zbl

[20] D.Y. Karamzin, V.A. De Oliveira, F.L. Pereira and G.N. Silva, On the properness of an impulsive control extension of dynamic optimization problems. ESAIM: COCV 21 (2015) 857–875 | Numdam | MR | Zbl

[21] M. Miller and E.Y. Rubinovich, Impulsive control in continuous and discrete-continuous systems. Kluwer Academic/Plenum Publishers, New York (2003) | DOI | MR | Zbl

[22] M. Motta and F. Rampazzo, Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls. Differ. Int. Equ. 8 (1995) 269–288 | MR | Zbl

[23] M. Motta and F. Rampazzo, Dynamic programming for nonlinear systems driven by ordinary and impulsive controls. SIAM J. Control Optim. 34 (1996) 199–225 | DOI | MR | Zbl

[24] M. Motta, F. Rampazzo, State-constrained control problems with neither coercivity nor L1 bounds on the controls. Ann. Mat. Pura Appl. 177 (1999) 117–142 | DOI | MR | Zbl

[25] M. Motta and C. Sartori, On asymptotic exit-time control problems lacking coercivity. ESAIM Control Optim. Calc. Var. 20 (2014) 957–982 | DOI | Numdam | MR | Zbl

[26] M. Palladino and R.B. Vinter, Minimizers that are not also relaxed minimizers. SIAM J. Control and Optim. 52 (2014) 2164–2179 | DOI | MR | Zbl

[27] M. Palladino and R.B. Vinter, When are Minimizing Controls also Minimizing Relaxed Controls? Discrete Continuous Dyn. Syst. A 35 (2015) 4573–4592 | DOI | MR | Zbl

[28] R.T. Rockafellar and R.J.-B. Wets, Variational Analysis, in Vol. 317 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, New York (1998) | DOI | MR | Zbl

[29] G. Silva and R. Vinter, Measure driven differential inclusions. J. Math. Anal. Appl. 202 (1996) 727–746 | DOI | MR | Zbl

[30] G. Silva and R. Vinter, Necessary conditions for optimal impulsive control problems. SIAM J. Control Optim. 35 (1997) 1829–1846 | DOI | MR | Zbl

[31] F. Rampazzo, On the Riemannian structure of a Lagrangian system and the problem of adding time-dependent constraints as controls. Eur. J. Mech. A Solids 10 (1991) 405–431 | MR | Zbl

[32] R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000) | MR | Zbl

[33] H.J. Sussmann, On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab. 6 (1978) 19–41 | DOI | MR | Zbl

[34] J. Warga, Normal control problems have no minimizing strictly original solutions. Bull. Am. Math. Soc. 77 (1971) 625–628 | DOI | MR | Zbl

[35] J. Warga, Optimal Control of Differential and Functional Equations. Academic Press, New York (1972) | MR | Zbl

[36] P. Wolenski and S. Žabić, A differential solution concept for impulsive systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13B (2006) 199–210 | MR

Cited by Sources: