The analytical solution of Newton’s aerodynamic problem in the class of bodies with vertical plane of symmetry and developable side boundary
ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 15.

The method of Hessian measures is used to find the differential equation that defines the optimal shape of nonrotationally symmetric bodies with minimal resistance moving in a rare medium. The synthesis of optimal solutions is described. A theorem on the optimality of the obtained solutions is proved.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/cocv/2019064
Classification : 49N99
@article{COCV_2020__26_1_A15_0,
     author = {Lokutsievskiy, L.V. and Zelikin, M.I.},
     title = {The analytical solution of {Newton{\textquoteright}s} aerodynamic problem in the class of bodies with vertical plane of symmetry and developable side boundary},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     publisher = {EDP-Sciences},
     volume = {26},
     year = {2020},
     doi = {10.1051/cocv/2019064},
     mrnumber = {4064476},
     zbl = {1439.49058},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2019064/}
}
TY  - JOUR
AU  - Lokutsievskiy, L.V.
AU  - Zelikin, M.I.
TI  - The analytical solution of Newton’s aerodynamic problem in the class of bodies with vertical plane of symmetry and developable side boundary
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2020
VL  - 26
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2019064/
DO  - 10.1051/cocv/2019064
LA  - en
ID  - COCV_2020__26_1_A15_0
ER  - 
%0 Journal Article
%A Lokutsievskiy, L.V.
%A Zelikin, M.I.
%T The analytical solution of Newton’s aerodynamic problem in the class of bodies with vertical plane of symmetry and developable side boundary
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2020
%V 26
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2019064/
%R 10.1051/cocv/2019064
%G en
%F COCV_2020__26_1_A15_0
Lokutsievskiy, L.V.; Zelikin, M.I. The analytical solution of Newton’s aerodynamic problem in the class of bodies with vertical plane of symmetry and developable side boundary. ESAIM: Control, Optimisation and Calculus of Variations, Tome 26 (2020), article no. 15. doi : 10.1051/cocv/2019064. http://archive.numdam.org/articles/10.1051/cocv/2019064/

[1] A. Aleksenko and A. Plakhov, Bodies of zero resistance and bodies invisible in one direction. Nonlinearity 22 (2009) 1247–1258. | DOI | MR | Zbl

[2] F. Brock, V. Ferone and B. Kawohl, A symmetry problem in the calculus of variations. Calc. Var. Partial Differ. Equ. 4 (1996) 593–599. | DOI | MR | Zbl

[3] G. Buttazzo and A. Frediani, A survey on the Newton problem of optimal profiles, in Variational Analysis and Aerospace Engineering, Springer (2009), chap 3, 33–48. | DOI | MR | Zbl

[4] G. Buttazzo and B. Kawohl, On newton’s problem of minimal resistance. Math. Intell. 15 (1993) 7–12. | DOI | MR | Zbl

[5] G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions. Math. Nach. 173 (1995) 71–89. | DOI | MR | Zbl

[6] A. Colesanti, A steiner type formula for convex functions. Mathematika 44 (1997) 195–214. | DOI | MR | Zbl

[7] A. Colesanti and D. Hug, Hessian measures of semi-convex functions and applications to support measures of convex bodies. Manuscr. Math. 101 (2000) 209–238. | DOI | MR | Zbl

[8] V.V. Golubev, Lectures on the analytic theory of differential equations, in Russian. Moscow, Leningrad (1950). | MR | Zbl

[9] N. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, vol 7. Wiley (1999). | MR | Zbl

[10] N.H. Ibragimov, Hornbook of group analysis. Moscow (1989).

[11] N.H. Ibragimov, Experience of group analysis of ODEs, in Russian. Moscow (1991).

[12] G. Julia, Exercices D’Analyse, Tome III Equations Differentielles. Gauthier-Villars, Paris (1933). | JFM

[13] T. Lachand-Robert and É. Oudet, Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16 (2005) 368–379. | DOI | MR | Zbl

[14] T. Lachand-Robert and M. Peletier, An example of non-convex minimization and an application to Newton’s problem of the body of least resistance. Ann. l’Inst. Henri Poincare (C) Non Linear Anal. 18 (2001) 179–198. | DOI | Numdam | MR | Zbl

[15] T. Lachand-Robert and M. Peletier, Newton’s problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226 (2001) 153–176. | DOI | MR | Zbl

[16] L.V. Lokutsievskiy and M.I. Zelikin, Hessian measures in the aerodynamic Newton problem. J. Dyn. Control Syst. 24 (2018) 475–495. | DOI | MR | Zbl

[17] P. Marcellini, Non convex integrals of the Calculus of Variations. Springer Berlin Heidelberg, Berlin, Heidelberg (1990) 16–57. | Zbl

[18] Newton, Philosophiæ Naturalis Principia Mathematica (1687). | DOI

[19] L. Ovsiannikov, Group Analysis of Differential Equations. Academic Press, Elsevier Inc. (1982). | MR | Zbl

[20] A. Polyanin and V. Zaitsev, Handbook of Nonlinear Partial Differential Equations (Second Edition, Updated, Revised and Extended). Chapman & Hall/CRC Press, Boca Raton-London-New York (2012). | MR | Zbl

[21] R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1997). | MR | Zbl

[22] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, second expanded edition edn. Cambridge University Press, Cambridge (2014). | MR | Zbl

[23] G. Wachsmuth, The numerical solution of newton’s problem of least resistance. Math. Program. 147 (2014) 331–350. | DOI | MR | Zbl

[24] M.I. Zelikin, Optimal control and calculus of variations, in Russian. Moscow (2004). | MR

Cité par Sources :

This work is financially supported by RFBR grant 20-01-00469.