We consider a 2D mathematical model describing the motion of a solution of surfactants submitted to a high shear stress in a CouetteTaylor system. We are interested in a stabilization process obtained thanks to the shear. We prove that, if the shear stress is large enough, there exists global in time solution for small initial data and that the solution of the linearized system (controlled by a nonconstant parameter) tends to 0 as goes to infinity. This explains rigorously some experiments.
Mots-clés : stabilization, shear stress, Couette system, global solution
@article{COCV_2002__7__239_0, author = {Torri, V.}, title = {Mathematical analysis of the stabilization of lamellar phases by a shear stress}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {239--267}, publisher = {EDP-Sciences}, volume = {7}, year = {2002}, doi = {10.1051/cocv:2002010}, mrnumber = {1925028}, zbl = {1023.35013}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002010/} }
TY - JOUR AU - Torri, V. TI - Mathematical analysis of the stabilization of lamellar phases by a shear stress JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 239 EP - 267 VL - 7 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002010/ DO - 10.1051/cocv:2002010 LA - en ID - COCV_2002__7__239_0 ER -
%0 Journal Article %A Torri, V. %T Mathematical analysis of the stabilization of lamellar phases by a shear stress %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 239-267 %V 7 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002010/ %R 10.1051/cocv:2002010 %G en %F COCV_2002__7__239_0
Torri, V. Mathematical analysis of the stabilization of lamellar phases by a shear stress. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 239-267. doi : 10.1051/cocv:2002010. http://archive.numdam.org/articles/10.1051/cocv:2002010/
[1] Integral representations of functions and embeddings theorems, Vol. 1. V.H. Winston and Sons.
, and ,[2] Regularity and integrability of 3 Euler and Navier-Stokes equations for rotating fluids. Asymptot. Anal. 15 (1997) 103-150. | Zbl
, and ,[3] Undulation instability under shear: A model to explain the different orientation of a lamellar phase under shear. European J. Soft Condensed Matter (to appear).
, , and ,[4] Solitary waves of generalized Kadomtsev-Petviashvili equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 211-236. | Numdam | MR | Zbl
and ,[5] J. Phys. II France 3 (1993) 1427.
, and .[6] J. Phys. II France 3 (1993) 9.
and .[7] Asymptotic of solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations 150 (1998) 363-384. | MR | Zbl
,[8] Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. | Zbl
,[9] The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach (1963). | MR | Zbl
,[10] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). | MR | Zbl
,[11] Problèmes aux limites non homogènes et applications. Dunod (1968). | Zbl
and ,[12] Compact sets in the Spaces . Ann. Mat. Pura Appl. 146 (1987) 65-96. | MR | Zbl
,[13] Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, Appl. Math. Sci. 68 (1997). | MR | Zbl
,Cité par Sources :