We consider complex-valued solutions of the Ginzburg-Landau equation on a smooth bounded simply connected domain of , , where is a small parameter. We assume that the Ginzburg-Landau energy verifies the bound (natural in the context) , where is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of , as , is to establish uniform bounds for the gradient, for some . We review some recent techniques developed in the elliptic case in [7], discuss some variants, and extend the methods to the associated parabolic equation.
Mots clés : Ginzburg-Landau, parabolic equations, Hodge-de Rham decomposition, jacobians
@article{COCV_2002__8__219_0, author = {Bethuel, F. and Orlandi, G.}, title = {Uniform estimates for the parabolic {Ginzburg-Landau} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {219--238}, publisher = {EDP-Sciences}, volume = {8}, year = {2002}, doi = {10.1051/cocv:2002026}, zbl = {1078.35013}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2002026/} }
TY - JOUR AU - Bethuel, F. AU - Orlandi, G. TI - Uniform estimates for the parabolic Ginzburg-Landau equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 219 EP - 238 VL - 8 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2002026/ DO - 10.1051/cocv:2002026 LA - en ID - COCV_2002__8__219_0 ER -
%0 Journal Article %A Bethuel, F. %A Orlandi, G. %T Uniform estimates for the parabolic Ginzburg-Landau equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 219-238 %V 8 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2002026/ %R 10.1051/cocv:2002026 %G en %F COCV_2002__8__219_0
Bethuel, F.; Orlandi, G. Uniform estimates for the parabolic Ginzburg-Landau equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 219-238. doi : 10.1051/cocv:2002026. http://archive.numdam.org/articles/10.1051/cocv:2002026/
[1] Variational convergence for functionals of Ginzburg-Landau type. Preprint (2001).
, and ,[2]
, , and (in preparation).[3] Topological methods for the Ginzburg-Landau equation. J. Math. Pures Appl. 11 (1998) 1-49. | Zbl
and ,[4] A measure theoretic approach to higher codimension mean curvature flow. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) 27-49. | Numdam | MR | Zbl
and ,[5] Vortex annihilation in nonlinear heat flow for Ginzburg-Landau systems. Eur. J. Appl. Math. 6 (1995) 115-126. | Zbl
, , and ,[6] Variational methods for Ginzburg-Landau equations, in Calculus of Variations and Geometric evolution problems, Cetraro 1996, edited by S. Hildebrandt and M. Struwe. Springer (1999). | Zbl
,[7] estimates for solutions to the Ginzburg-Landau equation with boundary data in . C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 1069-1076. | Zbl
, , and ,[8] Asymptotics for the minimization of a Ginzburg-Landau functional. Calc. Var. Partial Differential Equations 1 (1993) 123-148. | Zbl
, and ,[9] Ginzburg-Landau Vortices. Birkhäuser, Boston (1994). | Zbl
, and ,[10] Small energy solutions to the Ginzburg-Landau equation. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 763-770. | Zbl
, and ,[11] Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions. J. Funct. Anal. 186 (2001) 432-520. Erratum (to appear). | Zbl
, and ,[12] Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243-303. | Numdam | MR | Zbl
and ,[13] Lifting in Sobolev spaces. J. Anal. 80 (2000) 37-86. | MR | Zbl
, and ,[14] On the structure of the Sobolev space with values into the circle. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 119-124. | MR | Zbl
, and ,[15] Sur une conjecture de E. De Giorgi relative à l'énergie de Ginzburg-Landau. C. R. Acad. Sci. Paris Sér. I Math. 319 (1994) 167-170. | Zbl
and ,[16] Geometric Measure Theory. Springer, Berlin (1969). | MR | Zbl
,[17] Lower bounds for the energy of -valued maps in perforated domains. J. Anal. Math. 66 (1995) 295-305. | MR | Zbl
and ,[18] Mappings minimizing the -norm of the gradient. Comm. Pure Appl. Math. 40 (1987) 555-588. | MR | Zbl
and ,[19] Lower bounds for generalized Ginzburg-Landau functionals. SIAM J. Math. Anal. 30 (1999) 721-746. | Zbl
,[20] Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. | Zbl
and ,[21] Scaling limits and regularity results for a class of Ginzburg-Landau systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 423-466. | Numdam | Zbl
and ,[22] The Jacobian and the Ginzburg-Landau energy. Calc. Var. Partial Differential Equations (to appear). | Zbl
and ,[23] Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323-359. | Zbl
,[24] Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension- submanifolds. Comm. Pure Appl. Math. 51 (1998) 385-441 | Zbl
,[25] Rectifiability of defect measures, fundamental groups and density of Sobolev mappings, in Journées “Équations aux Dérivées Partielles”, Saint-Jean-de-Monts, 1996, Exp. No. XII. École Polytechnique, Palaiseau (1996). | Numdam | Zbl
,[26] Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc. 1 (1999) 237-311. Erratum, Ibid. | Zbl
and ,[27] A quantization property for static Ginzburg-Landau vortices. Comm. Pure Appl. Math. 54 (2001) 206-228. | Zbl
and ,[28] A quantization property for moving line vortices. Comm. Pure Appl. Math. 54 (2001) 826-850. | MR | Zbl
and ,[29] The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. | MR | Zbl
,[30] Un esempio di -convergenza. Boll. Un. Mat. Ital. B 14 (1977) 285-299. | MR | Zbl
and ,[31] Line vortices in the -Higgs model. ESAIM: COCV 1 (1996) 77-167. | Numdam | MR | Zbl
,[32] Dense subsets of . Ann. Global Anal. Geom. 18 (2000) 517-528. | MR | Zbl
,[33] Asymptotic analysis for the Ginzburg-Landau Equation. Boll. Un. Mat. Ital. B 8 (1999) 537-575. | Zbl
,[34] Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152 (1997) 379-403; Erratum 171 (2000) 233. | MR | Zbl
,[35] Lectures on Geometric Measure Theory, in Proc. of the Centre for Math. Analysis. Australian Nat. Univ., Canberra (1983). | MR | Zbl
,[36] On the asymptotic behavior of the Ginzburg-Landau model in 2 dimensions. J. Differential Equations 7 (1994) 1613-1624; Erratum 8 (1995) 224. | Zbl
,Cité par Sources :