We consider minimization problems of the form where is a bounded convex open set, and the Borel function is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of and the zero level set of , we prove that the viscosity solution of a related Hamilton-Jacobi equation provides a minimizer for the integral functional.
Mots-clés : calculus of variations, existence, non-convex problems, non-coercive problems, viscosity solutions
@article{COCV_2003__9__125_0, author = {Crasta, Graziano and Malusa, Annalisa}, title = {Geometric constraints on the domain for a class of minimum problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {125--133}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003003}, mrnumber = {1957093}, zbl = {1066.49003}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2003003/} }
TY - JOUR AU - Crasta, Graziano AU - Malusa, Annalisa TI - Geometric constraints on the domain for a class of minimum problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 125 EP - 133 VL - 9 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2003003/ DO - 10.1051/cocv:2003003 LA - en ID - COCV_2003__9__125_0 ER -
%0 Journal Article %A Crasta, Graziano %A Malusa, Annalisa %T Geometric constraints on the domain for a class of minimum problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 125-133 %V 9 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2003003/ %R 10.1051/cocv:2003003 %G en %F COCV_2003__9__125_0
Crasta, Graziano; Malusa, Annalisa. Geometric constraints on the domain for a class of minimum problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 125-133. doi : 10.1051/cocv:2003003. http://archive.numdam.org/articles/10.1051/cocv:2003003/
[1] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997). | Zbl
and ,[2] Solutions de viscosité des équations de Hamilton-Jacobi. Springer Verlag, Berlin (1994). | Zbl
,[3] A non-convex variational problem related to change of phase. Appl. Math. Optim. 21 (1990) 113-138. | MR | Zbl
and ,[4] Geometric restrictions for the existence of viscosity solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 189-220. | Numdam | MR | Zbl
, , and ,[5] Some scalar and vectorial problems in the Calculus of Variations, Ph.D. Thesis. SISSA, Trieste (1997).
,[6] Existence and non existence of solutions to a variational problem on a square. Houston J. Math. 24 (1998) 345-375. | MR | Zbl
and ,[7] Existence of solutions for a class of non convex minimum problems. Math. Z. 228 (1998) 177-199. | MR | Zbl
, and ,[8] Minimizing a functional depending on and on . Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 339-352. | Numdam | MR | Zbl
,[9] On minima of radially symmetric functionals of the gradient. Nonlinear Anal. 23 (1994) 239-249. | MR | Zbl
and ,[10] On the minimum problem for a class of non-coercive non-convex variational problems. SIAM J. Control Optim. 38 (1999) 237-253. | MR | Zbl
,[11] Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Math. Z. 235 (2000) 569-589. | MR | Zbl
,[12] Euler-Lagrange inclusions and existence of minimizers for a class of non-coercive variational problems. J. Convex Anal. 7 (2000) 167-181. | Zbl
and ,[13] Non-convex minimization problems for functionals defined on vector valued functions. J. Math. Anal. Appl. 254 (2001) 538-557. | MR | Zbl
and ,[14] Existence of minimizers for non-quasiconvex integrals. Arch. Rational Mech. Anal. 131 (1995) 359-399. | MR | Zbl
and ,[15] Analysis and numerical studies of a problem of shape design. Arch. Rational Mech. Anal. 114 (1991) 349-363. | MR | Zbl
, and ,[16] Optimal design and relaxation of variational problems, I, II and III. Comm. Pure Appl. Math. 39 (1976) 113-137, 139-182, 353-377. | MR | Zbl
and ,[17] Generalized solutions of Hamilton-Jacobi equations. Pitman, London, Pitman Res. Notes Math. Ser. 69 (1982). | Zbl
,[18] Existence theorems for nonconvex problems J. Math. Pures Appl. 62 (1983) 349-359. | MR | Zbl
and ,[19] Convex Analysis. Princeton Univ. Press, Princeton (1970). | Zbl
,[20] An existence result for a class of non convex problems of the Calculus of Variations. J. Convex Anal. 5 (1998) 31-44. | MR | Zbl
,[21] A variational problem on subsets of . Proc. Roy. Soc. Edinburg Sect. A 127 (1997) 1089-1101. | MR | Zbl
,Cité par Sources :