We investigate the diffusion limit for general conservative Boltzmann equations with oscillating coefficients. Oscillations have a frequency of the same order as the inverse of the mean free path, and the coefficients may depend on both slow and fast variables. Passing to the limit, we are led to an effective drift-diffusion equation. We also describe the diffusive behaviour when the equilibrium function has a non-vanishing flux.
Mots-clés : Boltzmann equation, diffusion approximation, homogenization, drift-diffusion equation
@article{COCV_2003__9__371_0, author = {Goudon, Thierry and Mellet, Antoine}, title = {Homogenization and diffusion asymptotics of the linear {Boltzmann} equation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {371--398}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003018}, mrnumber = {1988668}, zbl = {1070.35032}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2003018/} }
TY - JOUR AU - Goudon, Thierry AU - Mellet, Antoine TI - Homogenization and diffusion asymptotics of the linear Boltzmann equation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 371 EP - 398 VL - 9 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2003018/ DO - 10.1051/cocv:2003018 LA - en ID - COCV_2003__9__371_0 ER -
%0 Journal Article %A Goudon, Thierry %A Mellet, Antoine %T Homogenization and diffusion asymptotics of the linear Boltzmann equation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 371-398 %V 9 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2003018/ %R 10.1051/cocv:2003018 %G en %F COCV_2003__9__371_0
Goudon, Thierry; Mellet, Antoine. Homogenization and diffusion asymptotics of the linear Boltzmann equation. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 371-398. doi : 10.1051/cocv:2003018. http://archive.numdam.org/articles/10.1051/cocv:2003018/
[1] Homogenization and two scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | MR | Zbl
,[2] Homogenization of the criticality spectral equation in neutron transport. ESAIM: M2AN 33 (1999) 721-746. Announced in Homogénéisation d'une équation spectrale du transport neutronique. CRAS, Vol. 325 (1997) 1043-1048. | Zbl
and ,[3] Homogenization and localization in locally periodic transport. ESAIM: COCV 8 (2002) 1-30. | Numdam | MR | Zbl
, and ,[4] Homogeneization of a spectral problem for a multigroup neutronic diffusion model. Comput. Methods Appl. Mech. Engrg. 187 (2000) 91-117. | MR | Zbl
and ,[5] Couplage d'équations et homogénéisation en transport neutronique. Thèse de doctorat de l'Université Paris 6 (1997).
,[6] Homogenization of a spectral equation with drift in linear transport. ESAIM: COCV 6 (2001) 613-627. | Numdam | MR | Zbl
,[7] The Rosseland approximation for the radiative transfer equations. CPAM 40 (1987) 691-721; and CPAM 42 (1989) 891-894. | MR | Zbl
, and ,[8] The nonaccretive radiative transfer equations: Existence of solutions ans Rosseland approximations. J. Funct. Anal. 77 (1988) 434-460. | MR | Zbl
, , and ,[9] Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 (1979) 53-157. | MR | Zbl
, and ,[10] Analyse fonctionnelle, Théorie et applications. Masson (1993). | MR | Zbl
,[11] Homogenization of a spectral problem with drift. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 567-594; Announced in Homogenization of a diffusion equation with drift. CRAS, Vol. 327 (2000) 807-812. | MR | Zbl
,[12] Homogénéisation des modèles de diffusion en neutronique. Thèse Université Paris 6 (1999).
,[13] The Boltzmann equation and its applications. Springer-Verlag, Appl. Math. Sci. 67 (1988). | MR | Zbl
,[14] Kinetic models for chemotaxis and their drift-diffusion limits. Preprint. | MR | Zbl
, , and ,[15] Work in preparation. Personal communication.
,[16] Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol. 3. Masson (1985). | Zbl
and ,[17] Diffusion limit for non homogeneous and non reversible processes. Indiana Univ. Math. J. 49 (2000) 1175-1198. | MR | Zbl
, and ,[18] regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 271-287. | EuDML | Numdam | MR | Zbl
, and ,[19] Homogenization of transport equations. SIAM J. Appl. Math. 60 (2000) 1447-1470. | MR | Zbl
and ,[20] Functional analysis, Theory and applications. Dover (1994). | MR | Zbl
,[21] The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 359-375. | MR | Zbl
,[22] Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 245-265. | MR | Zbl
,[23] Averaging regularity results for pdes under transversality assumptions. Comm. Pure Appl. Math. 45 (1992) 1-26. | MR | Zbl
and ,[24] From kinetic to macroscopic models, in Kinetic equations and asymptotic theory, edited by B. Perthame and L. Desvillettes. Gauthier-Villars, Appl. Math. 4 (2000) 41-121. | MR | Zbl
,[25] Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76 (1988) 110-125. | MR | Zbl
, , and ,[26] Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac. Asymptot. Anal. 6 (1992) 135-160. | MR | Zbl
and ,[27] Diffusion approximation in heterogeneous media. Asymptot. Anal. 28 (2001) 331-358. | MR | Zbl
and ,[28] On fluid limit for the semiconductors Boltzmann equation. J. Differential Equations (to appear). | MR | Zbl
and ,[29] Approximation by homogeneization and diffusion of kinetic equations. Comm. Partial Differential Equations 26 (2001) 537-569. | MR | Zbl
and ,[30] Homogenization of transport equations; weak mean field approximation. Preprint. | MR | Zbl
and ,[31] Linear operator leaving invariant a cone in a Banach space. AMS Transl. 10 (1962) 199-325.
and ,[32] H-Theorems for Markoffian Processes, in Perspectives in Statistical Physics, edited by H. Raveché. North Holland (1981). | MR
,[33] Neutron transport and diffusion in heterogeneous media (1). J. Math. Phys. (1975) 1421-1427. | MR
,[34] Neutron transport and diffusion in heterogeneous media (2). Nuclear Sci. Engrg. (1976) 357-368.
,[35] Asymptotic solution of neutron transport processes for small free paths. J. Math. Phys. 15 (1974) 75-81. | MR
and ,[36] Neutron drift in heterogeneous media. Nuclear Sci. Engrg. 65 (1978) 290-302.
and ,[37] Diffuse limit for finite velocity Boltzmann kinetic models. Rev. Mat. Ib. 13 (1997) 473-513. | EuDML | MR | Zbl
and ,[38] A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608-623. | MR | Zbl
,[39] Existence theorems for the linear, space-inhomogeneous transport equation. IMA J. Appl. Math. 30 (1983) 81-105. | MR | Zbl
,[40] Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers. Asymptot. Anal. 4 (1991) 293-317. | MR | Zbl
,[41] On the diffusion approximation of a transport process without time scaling. Asymptot. Anal. 5 (1991) 145-159. | MR | Zbl
and ,[42] Remarks on homogenization, in Homogenization and effective moduli of material and media. Springer, IMA Vol. in Math. and Appl. (1986) 228-246. | MR | Zbl
,[43] Nuclear reactor theory. AMS (1961).
,Cité par Sources :