In this paper we establish a variant and generalized weak linking theorem, which contains more delicate result and insures the existence of bounded Palais-Smale sequences of a strongly indefinite functional. The abstract result will be used to study the semilinear Schrödinger equation , where are periodic in for and 0 is in a gap of the spectrum of ; . If for an appropriate constant , we show that this equation has a nontrivial solution.
Mots-clés : linking, Schrödinger equations, critical Sobolev exponent
@article{COCV_2003__9__601_0, author = {Schechter, Martin and Zou, Wenming}, title = {Weak linking theorems and {Schr\"odinger} equations with critical {Sobolev} exponent}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {601--619}, publisher = {EDP-Sciences}, volume = {9}, year = {2003}, doi = {10.1051/cocv:2003029}, mrnumber = {1998717}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2003029/} }
TY - JOUR AU - Schechter, Martin AU - Zou, Wenming TI - Weak linking theorems and Schrödinger equations with critical Sobolev exponent JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 601 EP - 619 VL - 9 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2003029/ DO - 10.1051/cocv:2003029 LA - en ID - COCV_2003__9__601_0 ER -
%0 Journal Article %A Schechter, Martin %A Zou, Wenming %T Weak linking theorems and Schrödinger equations with critical Sobolev exponent %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 601-619 %V 9 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2003029/ %R 10.1051/cocv:2003029 %G en %F COCV_2003__9__601_0
Schechter, Martin; Zou, Wenming. Weak linking theorems and Schrödinger equations with critical Sobolev exponent. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 601-619. doi : 10.1051/cocv:2003029. http://archive.numdam.org/articles/10.1051/cocv:2003029/
[1] Existence of solutions for semilinear elliptic equations with indefinite linear part. J. Differential Equations 96 (1992) 89-115. | MR | Zbl
and ,[2] On “multibump” bound states for certain semilinear elliptic equations. Indiana J. Math. 41 (1992) 983-1026. | Zbl
and ,[3] On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313 (1999) 15-37. | MR | Zbl
and ,[4] Existence of positive solutions of the equation in . J. Funct. Anal. 88 (1990) 90-117. | MR | Zbl
and ,[5] Existence of nontrivial solutions to a strongly indefinite semilinear equation. Proc. Amer. Math. Soc. 119 (1993) 179-186. | MR | Zbl
, and ,[6] On a semilinear Schrödinger equation with critical Sobolev exponent. Preprint of Stockholm University. | Zbl
and ,[7] On Schrödinger equation with periodic potential and critical Sobolev exponent. Topol. Meth. Nonl. Anal. 12 (1998) 245-261. | MR | Zbl
and ,[8] Homoclinic type solutions for a semilinear elliptic PDE on . Comm. Pure Appl. Math. 45 (1992) 1217-1269. | Zbl
and ,[9] Linear Operators. Part I. Interscience (1967). | Zbl
and ,[10] Solutions in spectral gaps for a nonlinear equation of Schrödinger type. J. Differential Equations 112 (1994) 53-80. | MR | Zbl
,[11] On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on . Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809. | MR | Zbl
,[12] Generalized linking theorem with an application to a semilinear Schrödinger equation. Adv. Differential Equations 3 (1998) 441-472. | MR | Zbl
and ,[13] Floquet Theory for Partial Differential Equations. Birkhäuser, Basel (1993). | MR | Zbl
,[14] On in . Comm. Pure Appl. Math. 46 (1993) 303-340. | MR
,[15] Prescribing scalar curvature on and related problems. Part I. J. Differential Equations 120 (1995) 319-410. | MR | Zbl
,[16] The concentration-compactness principle in the calculus of variations. The locally compact case. Part II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 223-283. | EuDML | Numdam | MR | Zbl
,[17] Methods of modern mathematical physics, Vol. IV. Academic Press (1978). | MR | Zbl
and ,[18] Critical point theory with weak-to-weak linking. Comm. Pure Appl. Math. 51 (1998) 1247-1254. | MR | Zbl
,[19] Ratationally invariant periodic solutions of semilinear wave equations. Preprint of the Department of Mathematics, University of California (1998). | MR | Zbl
,[20] Linking Methods in Critical Point Theory. Birkhäuser, Boston (1999). | MR | Zbl
,[21] The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160 (1988) 19-64. | MR | Zbl
,[22] Bifurcation into Spectral Gaps. Bull. Belg. Math. Soc. Suppl. (1995). | MR | Zbl
,[23] Homoclinic orbits for asymptotically linear Hamiltonian systems. J. Funct. Anal. 187 (2001) 25-41. | MR | Zbl
and ,[24] Nontrivial solution of a semilinear Schrödinger equation. Comm. Partial Differential Equations 21 (1996) 1431-1449. | MR | Zbl
and ,[25] On a semilinear Dirichlet problem and a nonlinear Schrödinger equation with periodic potential. Indiana Univ. Math. J. 52 (2003) 109-132. | MR | Zbl
and ,[26] Minimax Theorems. Birkhäuser, Boston (1996). | MR | Zbl
,[27] Solitary Waves of the Generalized Kadomtsev-Petviashvili Equations. Appl. Math. Lett. 15 (2002) 35-39. | MR | Zbl
,[28] Variant Fountain Theorems and their Applications. Manuscripta Math. 104 (2001) 343-358. | MR | Zbl
,[29] Some recent results in critical point theory. Pan Amer. Math. J. 12 (2002) 1-19. | MR | Zbl
,[30] Homoclinic Orbits for Schrödinger Systems. Michigan Math. J. 51 (2003) 59-71. | MR | Zbl
and ,[31] Superlinear Problem. Pacific J. Math. (accepted). | MR | Zbl
and ,[32] New Linking Theorem and Elliptic Systems with Nonlinear Boundary Condition. Nonl. Anal. TMA 52 (2003) 1797-1820. | MR | Zbl
and ,Cité par Sources :