This paper deals with a new method to control flexible structures by designing non-collocated sensors and actuators satisfying a pseudo-collocation criterion in the low-frequency domain. This technique is applied to a simply supported plate with a point force actuator and a piezoelectric sensor, for which we give some theoretical and numerical results. We also compute low-order controllers which stabilize pseudo-collocated systems and the closed-loop behavior show that this approach is very promising.
Keywords: collocation, piezoelectric sensors/actuators, positive-real systems, topology optimization
@article{COCV_2005__11_4_673_0, author = {Degryse, Emmanuel and Mottelet, St\'ephane}, title = {Shape optimization of piezoelectric sensors or actuators for the control of plates}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {673--690}, publisher = {EDP-Sciences}, volume = {11}, number = {4}, year = {2005}, doi = {10.1051/cocv:2005025}, mrnumber = {2167879}, zbl = {1081.49029}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2005025/} }
TY - JOUR AU - Degryse, Emmanuel AU - Mottelet, Stéphane TI - Shape optimization of piezoelectric sensors or actuators for the control of plates JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 673 EP - 690 VL - 11 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2005025/ DO - 10.1051/cocv:2005025 LA - en ID - COCV_2005__11_4_673_0 ER -
%0 Journal Article %A Degryse, Emmanuel %A Mottelet, Stéphane %T Shape optimization of piezoelectric sensors or actuators for the control of plates %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 673-690 %V 11 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2005025/ %R 10.1051/cocv:2005025 %G en %F COCV_2005__11_4_673_0
Degryse, Emmanuel; Mottelet, Stéphane. Shape optimization of piezoelectric sensors or actuators for the control of plates. ESAIM: Control, Optimisation and Calculus of Variations, Volume 11 (2005) no. 4, pp. 673-690. doi : 10.1051/cocv:2005025. http://archive.numdam.org/articles/10.1051/cocv:2005025/
[1] Shape optimization by the homogenization method. Springer-Verlag, New York (2002). | MR | Zbl
,[2] Smart material structures, modelling, estimation and control. Res. Appl. Math. Masson, Paris (1996). | Zbl
, and ,[3] Finite Element Approximation on Elliptic Optimal Design. C.R. Acad. Sci. Paris Ser. I 338 729-734 (2004). | Zbl
and ,[4] Necessary and sufficient conditions for robust stability of linear distributed feedback systems. Internat. J. Control 35 (1982) 255-267. | Zbl
and ,[5] Robust control with respect to coprime factors of infinite-dimensional positive real systems. IEEE Trans. Autom. Control 37 (1992) 868-871. | Zbl
and ,[6] Equivalence of input-output stability and exponential stability for infinite dimensional systems. J. Math. Syst. Theory 21 (1988) 19-48. | Zbl
and ,[7] A synthesis of Time and Frequency domain methods for the control of infinite dimensional systems: a system theoretic approach, in Control and Estimation in Distributed Parameter Systems, H.T. Banks Ed. SIAM (1988) 171-224.
,[8] Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26 (1988) 697-713. | Zbl
,[9] Étude d'une nouvelle approche pour la conception de capteurs et d'actionneurs pour le contrôle des systèmes flexibles abstraits. Ph.D. Thesis, Université de Technologie de Compiègne, France (2002).
,[10] Theoretical, numerical and experimental discussion on the use of piezoelectric devices for control-structure interaction. Eur. J. Mech A/solids 11 (1992) 181-213.
, , and ,[11] A Course in Control Theory. Lecture notes in control and information sciences. Springer-Verlag Berlin (1988). | Zbl
,[12] Stability results for the wave equation with indefinite damping. J. Diff. Equations 132 (1996) 338-352. | Zbl
and ,[13] Right half plane poles and zeros and design tradeoffs in feedback systems. IEEE Trans. Autom. Control 30 (1985) 555-565. | Zbl
and ,[14] Approximation theory for Linear-Quadratic-Gaussian control of flexible structures. SIAM J. Control Optim. 29 (1991) 1-37. | Zbl
and ,[15] Systèmes dynamiques dissipatifs et applications. Masson, Paris (1990). | MR | Zbl
,[16] Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48 (2003) 199-209. | Zbl
and ,[17] A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim., to appear. | MR | Zbl
and ,[18] Sensitivity of the zeros of flexible structures to sensor and actuator location. IEEE Trans. Autom. Control 45 (2000) 157-160. | Zbl
and ,[19] Singular internal stabilization of the wave equation. J. Differential Equations 145 (1998) 184-215. | Zbl
, and ,[20] Perturbation theory for linear operators. Springer-Verlag, Berlin (1980). | Zbl
,[21] control for distributed parameter systems: a state-space approach. Birkaüser, Boston (1993). | MR | Zbl
,[22] Non-dissipative boundary stabilization of the wave equation via boundary observation. J. Math. Pures Appl. 63 (1984) 59-80.
and ,[23] Optimization by Vector Space Methods. John Wiley and Sons, New York (1969). | MR | Zbl
,[24] On the lack of controllability of wave equations: a Gaussian beam approach. Asymptotic Analysis 32 (2002) 1-26. | Zbl
and ,[25] Programmation Mathématique: théorie et algorithmes, tome 2. Dunod, Paris (1983). | MR | Zbl
,[26] Dynamic boundary control of an Euler-Bernoulli beam. IEEE Trans. Autom. Control 37 (1992) 639-642.
,[27] Controllability and stabilization of a canal with wave generators. SIAM J. Control Optim. 38 (2000) 711-735. | Zbl
,[28] Hyperstability of Automatic Control Systems. Springer, New York (1973).
,[29] A method of structure/control design Integration based on finite frequency conditions and its application to smart arm structure design, Proc. of SICE 2002, Osaka, (August 2002).
and ,[30] Sensitivity of structural models for non collocated control systems. Trans. ASME 111 (1989) 646-655. | Zbl
and ,[31] Regularity of plate equations with control concentrated in interior curves. Proc. Roy. Soc. Edinburg A 127 (1997) 1005-1025. | Zbl
and ,[32] Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment. Technical Report TR96-01, Department of Mathematics and Statistics, University of Maryland, Baltimore, MD (July 1995). | Zbl
,Cited by Sources: