We prove partial regularity with optimal Hölder exponent of vector-valued minimizers of the quasiconvex variational integral under polynomial growth. We employ the indirect method of the bilinear form.
Mots-clés : partial regularity, optimal regularity, minimizer, calculus of variations, quasiconvexity
@article{COCV_2007__13_4_639_0, author = {Hamburger, Christoph}, title = {Optimal partial regularity of minimizers of quasiconvex variational integrals}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {639--656}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007039}, mrnumber = {2351395}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007039/} }
TY - JOUR AU - Hamburger, Christoph TI - Optimal partial regularity of minimizers of quasiconvex variational integrals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 639 EP - 656 VL - 13 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007039/ DO - 10.1051/cocv:2007039 LA - en ID - COCV_2007__13_4_639_0 ER -
%0 Journal Article %A Hamburger, Christoph %T Optimal partial regularity of minimizers of quasiconvex variational integrals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 639-656 %V 13 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007039/ %R 10.1051/cocv:2007039 %G en %F COCV_2007__13_4_639_0
Hamburger, Christoph. Optimal partial regularity of minimizers of quasiconvex variational integrals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 639-656. doi : 10.1051/cocv:2007039. http://archive.numdam.org/articles/10.1051/cocv:2007039/
[1] A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261-281. | Zbl
and ,[2] Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000) 665-687. | Zbl
, and ,[3] Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227-252. | Zbl
,[4] Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36 (1987) 361-371. | Zbl
and ,[5] partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1985) 121-143. | EuDML | Zbl
and ,[6] Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton Univ. Press, Princeton (1983). | MR | Zbl
,[7] The problem of the regularity of minimizers. Proc. Int. Congr. Math., Berkeley 1986 (1987) 1072-1083. | Zbl
,[8] Quasiconvexity, growth conditions and partial regularity. Partial differential equations and calculus of variations, Lect. Notes Math. 1357 (1988) 211-237. | Zbl
,[9] On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31-46. | Zbl
and ,[10] Differentiability of minima of non-differentiable functionals. Invent. Math. 72 (1983) 285-298. | Zbl
and ,[11] Sharp estimates for the derivatives of local minima of variational integrals. Boll. Unione Mat. Ital. 3A (1984) 239-248. | Zbl
and ,[12] Partial regularity for minima of variational integrals. Ark. Mat. 25 (1987) 221-229. | Zbl
and ,[13] Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 185-208. | Numdam | Zbl
and ,[14] Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994). | MR | Zbl
,[15] Partial regularity for minimizers of variational integrals with discontinuous integrands. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996) 255-282. | Numdam | Zbl
,[16] A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscr. Math. 95 (1998) 11-31. | Zbl
,[17] Partial regularity of minimizers of polyconvex variational integrals. Calc. Var. 18 (2003) 221-241. | Zbl
,[18] Partial regularity of solutions of nonlinear quasimonotone systems. Hokkaido Math. J. 32 (2003) 291-316. | Zbl
,[19] Partial boundary regularity of solutions of nonlinear superelliptic systems. Boll. Unione Mat. Ital. 10B (2007) 63-81.
,[20] Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl. 149 (1987) 311-328. | Zbl
,[21] The singular set of -minima. Arch. Ration. Mech. Anal. 177 (2005) 93-114. | Zbl
and ,[22] The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006) 331-398. | Zbl
and ,[23] The singular set of Lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal. 184 (2007) 341-369. | Zbl
and ,[24] A minimization problem and the regularity of solutions in the presence of a free boundary. Indiana Univ. Math. J. 32 (1983) 1-17. | Zbl
,Cité par Sources :