It is shown that the Lagrange's equations for a lagrangian system on a Lie algebroid are obtained as the equations for the critical points of the action functional defined on a Banach manifold of curves. The theory of lagrangian reduction and the relation with the method of Lagrange multipliers are also studied.
Mots-clés : variational calculus, lagrangian mechanics, Lie algebroids, reduction of dynamical systems, Euler-Poincaré equations, Lagrange-Poincaré equations
@article{COCV_2008__14_2_356_0, author = {Mart{\'\i}nez, Eduardo}, title = {Variational calculus on {Lie} algebroids}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {356--380}, publisher = {EDP-Sciences}, volume = {14}, number = {2}, year = {2008}, doi = {10.1051/cocv:2007056}, zbl = {1135.49027}, mrnumber = {2394515}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2007056/} }
TY - JOUR AU - Martínez, Eduardo TI - Variational calculus on Lie algebroids JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 356 EP - 380 VL - 14 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2007056/ DO - 10.1051/cocv:2007056 LA - en ID - COCV_2008__14_2_356_0 ER -
%0 Journal Article %A Martínez, Eduardo %T Variational calculus on Lie algebroids %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 356-380 %V 14 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2007056/ %R 10.1051/cocv:2007056 %G en %F COCV_2008__14_2_356_0
Martínez, Eduardo. Variational calculus on Lie algebroids. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 356-380. doi : 10.1051/cocv:2007056. http://archive.numdam.org/articles/10.1051/cocv:2007056/
[1] Manifolds, tensor analysis and applications Addison-Wesley, (1983) | MR | Zbl
, and[2] Reduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite Riemannian metric ESAIM: COCV 10 (2004) 526-548 | Numdam | MR | Zbl
[3] Dynamical Systems III Springer-Verlag (1988) | MR | Zbl
[4] Geometric models for noncommutative algebras Amer. Math. Soc., Providence, RI (1999) xiv + 184 pp | MR | Zbl
and and algebroid generalization of geometric mechanics in Lie Algebroids and related topics in differential geometry (Warsaw 2000), Banach Center Publications 54 (2001) 201 |[6] Variational principal fiber bundles: a geometric theory of Clebsch potentials and Lin constraints J. Geom. Phys 4 (1987) 183-206 | Zbl
, and[7] Lagrangian reduction by stages Mem. Amer. Math. Soc 152 (2001) x + 108 pp | MR
, and[8] Variational principles for Lie-Poisson and Hamilton-Poincaré equations Moscow Math. J 3 (2003) 833-867 | MR | Zbl
, , and[9] Nonholonomic Lagrangian systems on Lie algebroids Preprint 2005, arXiv:math-ph/0512003
, , and[10] A survey of Lagrangian mechanics and control on Lie algebroids and groupoids Int. J. Geom. Meth. Math. Phys 3 (2006) 509-558 | MR | Zbl
, , , and[11] Integrability of Lie brackets Ann. Math 157 (2003) 575-620 | MR | Zbl
and[12] Tangent bundle geometry for Lagrangian dynamics J. Phys. A: Math. Gen 16 (1983) 3755-3772 | MR | Zbl
[13] Lagrangian submanifolds and dynamics on Lie algebroids J. Phys. A: Math. Gen 38 (2005) R241-R308 | MR
, and[14] Geometrical Mechanics on algebroids Int. Jour. Geom. Meth. Math. Phys 3 (2006) 559-576 | MR
, and[15] The Euler-Poincaré equations and semidirect products with applications to continuum theories Adv. Math 137 (1998) 1-81 | MR | Zbl
, and[16] Espaces variationnels et mécanique Ann. Inst. Fourier 12 (1962) 1-124 | Numdam | MR | Zbl
[17] Differential manifolds Springer-Verlag, New-York (1972) | MR | Zbl
[18] Variational calculus, symmetries and reduction Int. J. Geom. Meth. Math. Phys 3 (2006) 577-590 | MR | Zbl
[19] Theory of Lie Groupoids and Lie Algebroids Cambridge University Press (2005) | MR | Zbl
[20] Introduction to Mechanics and symmetry Springer-Verlag, 1999 | MR | Zbl
and[21] Lagrangian Mechanics on Lie algebroids Acta Appl. Math 67 (2001) 295-320 | MR | Zbl
[22] Geometric formulation of Mechanics on Lie algebroids, in Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999, Publicaciones de la RSME 2 (2001) 209-222 | MR | Zbl
[23] Reduction in optimal control theory Rep. Math. Phys 53 (2004) 79-90 | MR | Zbl
[24] Classical field theory on Lie algebroids: Multisymplectic formalism Preprint 2004, arXiv:math.DG/0411352
[25] Classical Field Theory on Lie algebroids: Variational aspects J. Phys. A: Mat. Gen 38 (2005) 7145-7160 | MR | Zbl
, and algebroid structures and Lagrangian systems on affine bundles J. Geom. Phys 44 (2002) 70-95 |[27] Topics in differential geometry Book on the internet | MR
[28] Momentum maps and Hamiltonian Reduction Birkhäuser (2004) | MR
and[29] Lagrangian and Hamiltonian formalism for constrained variational problems Proc. Roy. Soc.Edinburgh Sect. A 132 (2002) 1417-1437 | MR | Zbl
and[30] Lagrangian equations on affine Lie algebroids Differential Geometry and its Applications, in Proc. 8th Int. Conf. (Opava 2001), D. Krupka et al Eds | MR | Zbl
, and[31] Lagrangian Mechanics and groupoids Fields Inst. Comm 7 (1996) 207-231 | MR | Zbl
Cité par Sources :