The Linear-Quadratic (LQ) optimal control problem is studied for a class of first-order hyperbolic partial differential equation models by using a nonlinear infinite-dimensional (distributed parameter) Hilbert state-space description. First the dynamical properties of the linearized model around some equilibrium profile are studied. Next the LQ-feedback operator is computed by using the corresponding operator Riccati algebraic equation whose solution is obtained via a related matrix Riccati differential equation in the space variable. Then the latter is applied to the nonlinear model, and the resulting closed-loop system dynamical performances are analyzed.
Mots-clés : first-order hyperbolic PDE's, infinite-dimensional systems, LQ-optimal control, stability, optimality
@article{COCV_2008__14_4_897_0, author = {Aksikas, Ilyasse and Winkin, Joseph J. and Dochain, Denis}, title = {Optimal {LQ-feedback} control for a class of first-order hyperbolic distributed parameter systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {897--908}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008015}, mrnumber = {2455389}, zbl = {1148.49033}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2008015/} }
TY - JOUR AU - Aksikas, Ilyasse AU - Winkin, Joseph J. AU - Dochain, Denis TI - Optimal LQ-feedback control for a class of first-order hyperbolic distributed parameter systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 897 EP - 908 VL - 14 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2008015/ DO - 10.1051/cocv:2008015 LA - en ID - COCV_2008__14_4_897_0 ER -
%0 Journal Article %A Aksikas, Ilyasse %A Winkin, Joseph J. %A Dochain, Denis %T Optimal LQ-feedback control for a class of first-order hyperbolic distributed parameter systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 897-908 %V 14 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2008015/ %R 10.1051/cocv:2008015 %G en %F COCV_2008__14_4_897_0
Aksikas, Ilyasse; Winkin, Joseph J.; Dochain, Denis. Optimal LQ-feedback control for a class of first-order hyperbolic distributed parameter systems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 897-908. doi : 10.1051/cocv:2008015. http://archive.numdam.org/articles/10.1051/cocv:2008015/
[1] Matrix Riccati Equations in Control and Systems Theory, Series: Systems & Control: Foundations & Applications. Birkhauser (2003). | MR | Zbl
, , and ,[2] Analysis and LQ-Optimal Control of Infinite-Dimensional Semilinear Systems: Application to a Plug Flow Reactor. Ph.D. thesis, Université Catholique de Louvain, Belgium (2005).
,[3] Stability analysis of an infinite-dimensional linearized plug flow reactor model, in Proceedings of the 43rd IEEE Conference on Decision and Control, CDC (2004) 2417-2422.
, and ,[4] LQ-optimal feedback regulation of a nonisothermal plug flow reactor infinite-dimensional model. Int. J. Tomography & Statistics 5 (2007) 73-78. | MR
, and ,[5] Optimal LQ-feedback regulation of a nonisothermal plug flow reactor model by spectral factorization. IEEE Trans. Automat. Control 52 (2007) 1179-1193. | MR
, and ,[6] Asymptotic stability of infinite-dimensional semilinear systems: application to a nonisothermal reactor. Systems Control Lett. 56 (2007) 122-132. | MR | Zbl
, and ,[7] Analysis and Control of Nonlinear Infinite Dimensional Systems. Boston: Academic Press (1993). | MR | Zbl
,[8] Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford University Press (2000). | MR | Zbl
,[9] Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, Mathematics Studies. North-Holland (1973). | MR | Zbl
,[10] Linear System Theory. Springer-Verlag, New York (1991). | MR | Zbl
and ,[11] LQ-optimal control of infinite-dimensional systems by spectral factorization. Automatica 28 (1992) 757-770. | MR | Zbl
and ,[12] Nonlinear and Robust Control of Partial Differential Equation Systems: Methods and Application to Transport-Reaction Processes. Birkhauser, Boston (2001). | MR | Zbl
,[13] An Introduction to Infinite-Dimensional Linear Systems Theory. Springer-Verlag, New York (1995). | MR | Zbl
and ,[14] Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13 (1973) 97-106. | MR | Zbl
and ,[15] Contribution to the Analysis and Control of Distributed Parameter Systems with Application to (Bio)chemical Processes and Robotics. Thèse d'Agrégation de l'Enseignement Supérieur, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1994).
,[16] Chemical Reactor Analysis and Design. 2nd edition, John Wiley, New York (1990).
and ,[17] Optimality and robustness of linear quadratic control for nonlinear systems. Automatica 26 (1990) 499-511. | MR | Zbl
and ,[18] Trajectory analysis of nonisothermal tubular reactor nonlinear models. Systems Control Lett. 42 (2001) 169-184. | MR | Zbl
, , and ,[19] Nonlinear Differential Equations in Abstract Spaces. Pergamon, Oxford (1981). | MR | Zbl
and ,[20] Control Theory for Partial Differential Equations: Continuous and Approximation Theories, Volume II: Abstract Hyperbolic-like Systems over a Finite Time Horizon. Cambridge University Press (2000). | MR | Zbl
and ,[21] Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer-Verlag, London (1999). | MR | Zbl
, and ,[22] Nonlinear Operators and Differential Equations in Banach spaces. John Wiley & Sons, New York (1976). | MR | Zbl
,[23] Semigroups of Linear Operators and Application to Partial Differential Equations, Appl. Math. Sci. 44. Springer-Verlag, New York (1983). | MR | Zbl
,[24] Advanced Process Control, Series in Chemical Engineering. Butterworth, Boston (1981).
,[25] Controllability and observability in time-variable linear systems. J. SIAM Control 5 (1967) 64-73. | MR | Zbl
and ,Cité par Sources :