Aubry sets and the differentiability of the minimal average action in codimension one
ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 1, pp. 1-48.

Let (x,u,u) be a lagrangian periodic of period 1 in x 1 ,,x n ,u. We shall study the non self intersecting functions u: R n R minimizing ; non self intersecting means that, if u(x 0 + k) + j = u(x 0 ) for some x 0 R n and (k , j) Z n × Z, then u(x) = u(x + k) + j x. Moser has shown that each of these functions is at finite distance from a plane u = ρ · x and thus has an average slope ρ; moreover, Senn has proven that it is possible to define the average action of u, which is usually called β(ρ) since it only depends on the slope of u. Aubry and Senn have noticed a connection between β(ρ) and the theory of crystals in n+1 , interpreting β(ρ) as the energy per area of a crystal face normal to (-ρ,1). The polar of β is usually called -α; Senn has shown that α is C 1 and that the dimension of the flat of α which contains c depends only on the “rational space” of α ' (c). We prove a similar result for the faces (or the faces of the faces, etc.) of the flats of α: they are C 1 and their dimension depends only on the rational space of their normals.

DOI : 10.1051/cocv:2008017
Classification : 35J20, 35J60
Mots-clés : Aubry-Mather theory for elliptic problems, corners of the mean average action
@article{COCV_2009__15_1_1_0,
     author = {Bessi, Ugo},
     title = {Aubry sets and the differentiability of the minimal average action in codimension one},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1--48},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {1},
     year = {2009},
     doi = {10.1051/cocv:2008017},
     mrnumber = {2488567},
     zbl = {1163.35007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2008017/}
}
TY  - JOUR
AU  - Bessi, Ugo
TI  - Aubry sets and the differentiability of the minimal average action in codimension one
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2009
SP  - 1
EP  - 48
VL  - 15
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2008017/
DO  - 10.1051/cocv:2008017
LA  - en
ID  - COCV_2009__15_1_1_0
ER  - 
%0 Journal Article
%A Bessi, Ugo
%T Aubry sets and the differentiability of the minimal average action in codimension one
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2009
%P 1-48
%V 15
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2008017/
%R 10.1051/cocv:2008017
%G en
%F COCV_2009__15_1_1_0
Bessi, Ugo. Aubry sets and the differentiability of the minimal average action in codimension one. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 1, pp. 1-48. doi : 10.1051/cocv:2008017. http://archive.numdam.org/articles/10.1051/cocv:2008017/

[1] G. Alberti, L. Ambrosio and X. Cabré, On a long standing conjecture of De Giorgi: symmetry in 3d for general nonlinearities and a local minimality property. Acta Appl. Math. 65 (2001) 9-33. | MR | Zbl

[2] S. Aubry and P.Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. Physica 8D (1983) 381-422.

[3] F. Auer and V. Bangert, Differentiability of the stable norm in codimension one. CRAS 333 (2001) 1095-1100. | MR | Zbl

[4] V. Bangert, On minimal laminations of the torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 95-138. | Numdam | MR | Zbl

[5] V. Bangert, Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. 2 (1994) 49-63. | MR | Zbl

[6] P. Bernard and B. Buffoni, Optimal mass transportation and Mather theory. J. Eur. Math. Soc. 9 (2007) 85-121. | MR

[7] D. Burago, S. Ivanov and B. Kleiner, On the structure of the stable norm of periodic metrics. Math. Res. Lett. 4 (1997) 791-808. | MR | Zbl

[8] L. De Pascale, M.S. Gelli and L. Granieri, Minimal measures, one-dimensional currents and the Monge-Kantorovich probem. Calc. Var. Partial Differential Equations 27 (2006) 1-23. | MR | Zbl

[9] K. Deimling, Nonlinear Functional Analysis. Springer, Berlin (1985). | MR | Zbl

[10] M.P. Do Carmo, Differential Forms and Applications. Springer, Berlin (1994). | MR | Zbl

[11] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers. Oxford (1980). | MR | Zbl

[12] D. Massart, Stable norms of surfaces: local structure of the unit ball at rational directions. GAFA 7 (1997) 996-1010. | MR | Zbl

[13] D. Massart, On Aubry sets and Mather's action functional. Israel J. Math. 134 (2003) 157-171. | MR | Zbl

[14] J.N. Mather, Differentiability of the minimal average action as a function of the rotation number. Bol. Soc. Bras. Mat. 21 (1990) 59-70. | MR | Zbl

[15] J.N. Mather, Action minimizing invariant measures for positive-definite Lagrangian systems. Math. Zeit. 207 (1991) 169-207. | MR | Zbl

[16] J.N. Mather, Variational construction of connecting orbits. Ann. Inst. Fourier 43 (1993) 1349-1386. | Numdam | MR | Zbl

[17] J. Moser, Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non LinÈaire 3 (1989) 229-272. | Numdam | MR | Zbl

[18] O. Osuna, Vertices of Mather's beta function. Ergodic Theory Dynam. Systems 25 (2005) 949-955. | MR | Zbl

[19] P.H. Rabinowitz and E. Stredulinsky, Mixed states for an Allen-Cahn type equation. Comm. Pure Appl. Math. 56 (2003) 1078-1134. | MR

[20] W. Senn, Strikte Konvexität für Variationsprobleme auf dem n-dimensionalen Torus. Manuscripta Math. 71 (1991) 45-65. | MR | Zbl

[21] W. Senn, Differentiability properties of the minimal average action. Calc. Var. Partial Differential Equations 3 (1995) 343-384. | MR | Zbl

[22] W. Senn, Equilibrium form of crystals and the stable norm. Z. angew. Math. Phys. 49 (1998) 919-933. | MR | Zbl

[23] J.E. Taylor, Crystalline variational problems. BAMS 84 (1978) 568-588. | MR | Zbl

[24] M.E. Taylor, Partial Differential Equations, Basic Theory Springer, Berlin (1996). | MR | Zbl

[25] N. Wiener, The ergodic theorem. Duke Math. J 5 (1939) 1-18. | JFM | MR

Cité par Sources :