This paper is concerned with mathematical modelling in the management of a wastewater treatment system. The problem is formulated as looking for a Nash equilibrium of a multiobjective pointwise control problem of a parabolic equation. Existence of solution is proved and a first order optimality system is obtained. Moreover, a numerical method to solve this system is detailed and numerical results are shown in a realistic situation posed in the estuary of Vigo (Spain).
Mots-clés : optimal control, pointwise control, Nash equilibrium, existence, optimality conditions, numerical simulation, wastewater management
@article{COCV_2009__15_1_117_0, author = {Garc{\'\i}a-Chan, N\'estor and Mu\~noz-Sola, Rafael and V\'azquez-M\'endez, Miguel Ernesto}, title = {Nash equilibrium for a multiobjective control problem related to wastewater management}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {117--138}, publisher = {EDP-Sciences}, volume = {15}, number = {1}, year = {2009}, doi = {10.1051/cocv:2008019}, mrnumber = {2488571}, zbl = {1155.49002}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2008019/} }
TY - JOUR AU - García-Chan, Néstor AU - Muñoz-Sola, Rafael AU - Vázquez-Méndez, Miguel Ernesto TI - Nash equilibrium for a multiobjective control problem related to wastewater management JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 117 EP - 138 VL - 15 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2008019/ DO - 10.1051/cocv:2008019 LA - en ID - COCV_2009__15_1_117_0 ER -
%0 Journal Article %A García-Chan, Néstor %A Muñoz-Sola, Rafael %A Vázquez-Méndez, Miguel Ernesto %T Nash equilibrium for a multiobjective control problem related to wastewater management %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 117-138 %V 15 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2008019/ %R 10.1051/cocv:2008019 %G en %F COCV_2009__15_1_117_0
García-Chan, Néstor; Muñoz-Sola, Rafael; Vázquez-Méndez, Miguel Ernesto. Nash equilibrium for a multiobjective control problem related to wastewater management. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 1, pp. 117-138. doi : 10.1051/cocv:2008019. http://archive.numdam.org/articles/10.1051/cocv:2008019/
[1] Numerical convergence for a sewage disposal problem. Appl. Math. Model. 25 (2001) 1015-1024. | Zbl
, , and ,[2] Numerical optimization for the location of wastewater outfalls. Comput. Optim. Appl. 22 (2002) 399-417. | MR | Zbl
, , and ,[3] Mathematical model for optimal control in wastewater discharges: the global performance. C. R. Biologies 328 (2005) 327-336.
, , and ,[4] The water conveyance problem: Optimal purification of polluted waters. Math. Models Meth. Appl. Sci. 15 (2005) 1393-1416. | MR | Zbl
, , , and ,[5] Numerical modelling of water pollution problems, in Environment, Economics and their Mathematical Models, J.I. Diaz and J.L. Lions Eds., Masson, Paris (1994). | Zbl
,[6] Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79-97. | MR | Zbl
, and ,[7] Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297-1327. | MR | Zbl
,[8] A Primer in Game Theory. Pearson Higher Education (1992). | Zbl
,[9] Linear and quasilinear equations of parabolic type, in Translations of Mathematical Monographs 23, Amer. Math. Soc., Providence (1968). | MR | Zbl
, and ,[10] Contrôle optimal des systèmes gouvernés par des équations aux derivées partielles. Dunod, Paris (1968). | MR | Zbl
,[11] Problèmes aux limites non homogenes et applications. Dunod, Paris (1968). | Zbl
and ,[12] Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. Control Optim. 38 (2000) 1534-1553. | Zbl
, and ,[13] Elements of the mathematical modeling in the control of pollutants emissions. Ecol. Model. 167 (2003) 263-275.
and ,[14] Finite Element Methods for Fluids. J. Wiley & Sons, Chichester (1989). | MR | Zbl
,[15] Nash equilibria for the multiobjetive control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457-498. | MR | Zbl
, and ,[16] Nonlinear Functional Analysis and its Applications. Springer-Verlag (1993).
,Cité par Sources :