Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
Mots-clés : Mumford-Shah functional, Ambrosio-Tortorelli functional, gamma-convergence, critical points, brittle fracture
@article{COCV_2009__15_3_576_0, author = {Francfort, Gilles A. and Le, Nam Q. and Serfaty, Sylvia}, title = {Critical points of {Ambrosio-Tortorelli} converge to critical points of {Mumford-Shah} in the one-dimensional {Dirichlet} case}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {576--598}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {2009}, doi = {10.1051/cocv:2008041}, mrnumber = {2542574}, zbl = {1168.49041}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2008041/} }
TY - JOUR AU - Francfort, Gilles A. AU - Le, Nam Q. AU - Serfaty, Sylvia TI - Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 576 EP - 598 VL - 15 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2008041/ DO - 10.1051/cocv:2008041 LA - en ID - COCV_2009__15_3_576_0 ER -
%0 Journal Article %A Francfort, Gilles A. %A Le, Nam Q. %A Serfaty, Sylvia %T Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 576-598 %V 15 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2008041/ %R 10.1051/cocv:2008041 %G en %F COCV_2009__15_3_576_0
Francfort, Gilles A.; Le, Nam Q.; Serfaty, Sylvia. Critical points of Ambrosio-Tortorelli converge to critical points of Mumford-Shah in the one-dimensional Dirichlet case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 576-598. doi : 10.1051/cocv:2008041. http://archive.numdam.org/articles/10.1051/cocv:2008041/
[1] Existence theory for a new class of variational problems. Arch. Ration. Mech. Anal. 111 (1990) 291-322. | MR | Zbl
,[2] Approximation of functionals depending on jumps by elliptic functionals via -convergence. Comm. Pure Appl. Math. 43 (1990) 999-1036. | MR | Zbl
and ,[3] On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6 (1992) 105-123. | MR | Zbl
and ,[4] Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | MR | Zbl
, and ,[5] Ginzburg-Landau vortices, Progress in Nonlinear Differential Equations and their Applications 13. Birkhäuser Boston Inc., Boston, MA (1994). | MR | Zbl
, and ,[6] Numerical implementation of the variational formulation of brittle fracture. Interfaces Free Bound. 9 (2007) 411-430. | MR | Zbl
,[7] -convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press (2002). | MR
,[8] Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108 (1989) 195-218. | MR | Zbl
, and ,[9] Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). | MR | Zbl
and ,[10] Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319-1342. | MR | Zbl
and ,[11] Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory. Calc. Var. Partial Differential Equations 10 (2000) 49-84. | MR | Zbl
and ,[12] Il limite nella -convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5) 14 (1977) 526-529. | MR | Zbl
and ,[13] Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. XLII (1989) 577-685. | MR | Zbl
and ,[14] Applications of Lie groups to differential equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986). | MR | Zbl
,[15] Vortices in the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications 70. Birkhäuser Boston Inc., Boston, MA (2007). | MR | Zbl
and ,[16] Phase field model with a variable chemical potential. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002) 993-1019. | MR | Zbl
,[17] A diffused interface whose chemical potential lies in a Sobolev space. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005) 487-510. | Numdam | MR | Zbl
,[18] Lost in the supermarket: decoding blurry barcodes. SIAM News 37 September (2004).
,Cité par Sources :