We study the local exponential stabilization of the 2D and 3D Navier-Stokes equations in a bounded domain, around a given steady-state flow, by means of a boundary control. We look for a control so that the solution to the Navier-Stokes equations be a strong solution. In the 3D case, such solutions may exist if the Dirichlet control satisfies a compatibility condition with the initial condition. In order to determine a feedback law satisfying such a compatibility condition, we consider an extended system coupling the Navier-Stokes equations with an equation satisfied by the control on the boundary of the domain. We determine a linear feedback law by solving a linear quadratic control problem for the linearized extended system. We show that this feedback law also stabilizes the nonlinear extended system.
Mots-clés : Navier-Stokes equation, feedback stabilization, Dirichlet control, Riccati equation
@article{COCV_2009__15_4_934_0, author = {Badra, Mehdi}, title = {Feedback stabilization of the {2-D} and {3-D} {Navier-Stokes} equations based on an extended system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {934--968}, publisher = {EDP-Sciences}, volume = {15}, number = {4}, year = {2009}, doi = {10.1051/cocv:2008059}, mrnumber = {2567253}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv:2008059/} }
TY - JOUR AU - Badra, Mehdi TI - Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 934 EP - 968 VL - 15 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv:2008059/ DO - 10.1051/cocv:2008059 LA - en ID - COCV_2009__15_4_934_0 ER -
%0 Journal Article %A Badra, Mehdi %T Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 934-968 %V 15 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv:2008059/ %R 10.1051/cocv:2008059 %G en %F COCV_2009__15_4_934_0
Badra, Mehdi. Feedback stabilization of the 2-D and 3-D Navier-Stokes equations based on an extended system. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 4, pp. 934-968. doi : 10.1051/cocv:2008059. http://archive.numdam.org/articles/10.1051/cocv:2008059/
[1] Feedback stabilization of 3-D Navier-Stokes equations based on an extended system, in Proceedings of the 22nd IFIP TC7 Conference (2005). | MR
,[2] Lyapunov function and local feedback boundary stabilization of the Navier-Stokes equations. SIAM J. Contr. Opt. (to appear). | MR
,[3] Feedback stabilization of Navier-Stokes equations. ESAIM: COCV 9 (2003) 197-206 (electronic). | Numdam | MR | Zbl
,[4] Tangential boundary stabilization of Navier-Stokes equations, Memoirs of the American Mathematical Society 181. AMS (2006). | MR | Zbl
, and ,[5] Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443-1494. | MR | Zbl
and ,[6] Representation and control of infinite-dimensional systems 1, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA, USA (1992). | MR | Zbl
, , and ,[7] Navier-Stokes equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, USA (1988) | MR | Zbl
and ,[8] Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429-448. | MR | Zbl
and ,[9] Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501-1542. | MR
, , and ,[10] On fractional powers of the Stokes operator. Proc. Japan Acad. 46 (1970) 1141-1143. | MR | Zbl
and ,[11] Stabilizability of two-dimensional Navier-Stokes equations with help of a boundary feedback control. J. Math. Fluid Mech. 3 (2001) 259-301. | MR | Zbl
,[12] Stabilization for the 3D Navier-Stokes system by feedback boundary control. Discrete Contin. Dyn. Syst. 10 (2004) 289-314. | MR | Zbl
,[13] An introduction to the mathematical theory of the Navier-Stokes equations, Vol. I, Linearized steady problems, Springer Tracts in Natural Philosophy, Vol. 38. Springer-Verlag, New York (1994). | MR | Zbl
,[14] An introduction to the mathematical theory of the Navier-Stokes equations, Vol. II, Nonlinear steady problems, Springer Tracts in Natural Philosophy, Vol. 39. Springer-Verlag, New York (1994). | MR | Zbl
,[15] Caractérisation de quelques espaces d'interpolation. Arch. Rational Mech. Anal. 25 (1967) 40-63. | MR | Zbl
,[16] Elliptic problems in nonsmooth domains, in Monographs and Studies in Mathematics, Vol. 24, Pitman (Advanced Publishing Program), Boston, MA, USA (1985). | MR | Zbl
,[17] Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31. American Mathematical Society, Providence, RI, USA, revised edition (1957). | MR | Zbl
and ,[18] Control theory for partial differential equations: continuous and approximation theories. I. Abstract parabolic systems, in Encyclopedia of Mathematics and its Applications 74, Cambridge University Press, Cambridge (2000). | MR | Zbl
and ,[19] Problèmes aux limites non homogènes et applications, Vol. I. Dunod, Paris (1968). | Zbl
and ,[20] Semigroups of linear operators and applications to partial differential equations, in Applied Mathematical Sciences 44, Springer-Verlag, New York (1983). | MR | Zbl
,[21] Feedback boundary stabilization of the two dimensional Navier-Stokes equations. SIAM J. Contr. Opt. 45 (2006) 790-828. | MR | Zbl
,[22] Feedback boundary stabilization of the three dimensional incompressible Navier-Stokes equations. J. Math. Pures Appl. 87 (2007) 627-669. | MR | Zbl
,[23] Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré, Anal. Non Linéaire 24 (2007) 921-951. | EuDML | Numdam | MR | Zbl
,[24] Partial differential equations. I. Basic theory, in Applied Mathematical Sciences 115, Springer-Verlag, New York (1996). | MR | Zbl
,[25] Navier-Stokes equations. Theory and numerical analysis, Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam, revised edition (1979). With an appendix by F. Thomasset. | MR | Zbl
,[26] Interpolation theory, function spaces, differential operators. Johann Ambrosius Barth, Heidelberg, second edition (1995). | MR | Zbl
,[27] Coïncidence entre des espaces d'interpolation et des domaines de puissances fractionnaires d'opérateurs. C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 173-176. | MR | Zbl
,Cité par Sources :