Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy
ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 1, pp. 23-36.

For external magnetic field hex, we prove that a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solution is stable among all vortexless solutions, then it is unique.

DOI: 10.1051/cocv:2008062
Classification: 35J50, 49J45
Keywords: Chern-Simons-Higgs theory, superconductivity, uniqueness, meissner solution
@article{COCV_2010__16_1_23_0,
     author = {Spirn, Daniel and Yan, Xiaodong},
     title = {Uniqueness of stable {Meissner} state solutions of the {Chern-Simons-Higgs} energy},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {23--36},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {1},
     year = {2010},
     doi = {10.1051/cocv:2008062},
     mrnumber = {2598086},
     zbl = {1186.35054},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2008062/}
}
TY  - JOUR
AU  - Spirn, Daniel
AU  - Yan, Xiaodong
TI  - Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
SP  - 23
EP  - 36
VL  - 16
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2008062/
DO  - 10.1051/cocv:2008062
LA  - en
ID  - COCV_2010__16_1_23_0
ER  - 
%0 Journal Article
%A Spirn, Daniel
%A Yan, Xiaodong
%T Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 23-36
%V 16
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2008062/
%R 10.1051/cocv:2008062
%G en
%F COCV_2010__16_1_23_0
Spirn, Daniel; Yan, Xiaodong. Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy. ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 1, pp. 23-36. doi : 10.1051/cocv:2008062. http://archive.numdam.org/articles/10.1051/cocv:2008062/

[1] L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations. J. Math. Pures. Appl. 77 (1998) 1-49. | Zbl

[2] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional. Cal. Var. Partial Differ. Equ. 1 (1993) 123-148. | Zbl

[3] A. Bonnet, S.J. Chapman and R. Monneau, Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ → +∞. SIAM J. Math. Anal. 31 (2000) 1374-1395. | Zbl

[4] K. Choe and H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons CP(1) model. Nonlinear Anal. 66 (2007) 2794-2813. | Zbl

[5] M. Kurzke and D. Spirn, Gamma limit of the nonself-dual Chern-Simons-Higgs energy. J. Funct. Anal. 244 (2008) 535-588. | Zbl

[6] M. Kurzke and D. Spirn, Scaling limits of the Chern-Simons-Higgs energy. Commun. Contemp. Math. 10 (2008) 1-16.

[7] F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications 39. Birkhäuser Boston, Inc., Boston, MA, USA (2000). | Zbl

[8] E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 119-145. | Numdam | Zbl

[9] S. Serfaty, Stable configurations in superconductivity: Uniqueness, mulitplicity, and vortex-nucleation. Arch. Rational Mech. Anal. 149 (1999) 329-365. | Zbl

[10] D. Spirn and X. Yan, Minimizers near the first critical field for the nonself-dual Chern-Simons-Higgs energy. Calc. Var. Partial Differ. Equ. (to appear). | MR | Zbl

[11] G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type. Calc. Var. Partial Differ. Equ. 29 (2007) 191-217. | MR | Zbl

[12] D. Ye and F. Zhou, Uniqueness of solutions of the Ginzburg-Landau problem. Nonlinear Anal. 26 (1996) 603-612. | MR | Zbl

Cited by Sources: