In this paper we study the parameterized complexity of approximating the parameterized counting problems contained in the class , the parameterized analogue of . We prove a parameterized analogue of a famous theorem of Stockmeyer claiming that approximate counting belongs to the second level of the polynomial hierarchy.
Mots clés : computational complexity, parameterized complexity, counting problems, approximate counting
@article{ITA_2011__45_2_197_0, author = {Andr\'es Montoya, J.}, title = {On the parameterized complexity of approximate counting}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {197--223}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/ita/2011007}, mrnumber = {2811654}, zbl = {1234.68121}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2011007/} }
TY - JOUR AU - Andrés Montoya, J. TI - On the parameterized complexity of approximate counting JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 197 EP - 223 VL - 45 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2011007/ DO - 10.1051/ita/2011007 LA - en ID - ITA_2011__45_2_197_0 ER -
%0 Journal Article %A Andrés Montoya, J. %T On the parameterized complexity of approximate counting %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 197-223 %V 45 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2011007/ %R 10.1051/ita/2011007 %G en %F ITA_2011__45_2_197_0
Andrés Montoya, J. On the parameterized complexity of approximate counting. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 2, pp. 197-223. doi : 10.1051/ita/2011007. http://archive.numdam.org/articles/10.1051/ita/2011007/
[1] PRIMES is in Annals of Math. 160 (2004) 781-793. | MR | Zbl
, and ,[2] Approximation algorithms for some parameterized counting problems, in Proceedings of the 13th Annual International Symposium on Algorithms and Computation, edited by P. Bose and P. Morin. Lect. Notes Comput. Sci. 2518 (2002) 453-464. | MR | Zbl
and ,[3] Parameterized Complexity. Springer-Verlag (1999). | MR | Zbl
and ,[4] The parameterized complexity of counting problems. SIAM J. Comput. 33 (2004) 892-922. | MR | Zbl
and ,[5] Parameterized Complexity Theory. Springer-Verlag (2006). | MR | Zbl
and ,[6] Randomized methods in Computation. Manuscript (2001) http://www.wisdom.weizmann.ac.il/ oded/rnd.html.
,[7] and the Polynomial Hierarchy. Inform. Process. Lett. 17 (1983) 215-217. | MR | Zbl
,[8] On parameterized Counting. Ph.D thesis, Freiburg University (2008). | Zbl
,[9] The parameterized complexity of probability amplification. Inform. Process. Lett. 109 (2008) 46-53. | MR | Zbl
,[10] Randomized approximations of parameterized counting problems. Proceedings of the 2nd International Workshop on Parameterized and Exact Computation (IWPEC'06). Lect. Notes Comput. Sci. 4169 (2006) 50-59. | MR | Zbl
,[11] Computational Complexity. Addison-Wesley (1994). | MR | Zbl
,[12] On approximation Algorithms for SIAM J. Comput. 14 (1985) 849-861. | MR | Zbl
,[13] is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20 (1991) 865-877. | MR | Zbl
,[14] The complexity of computing the permanent. Theoret. Comput. Sci. 8 (1979) 189-201. | MR | Zbl
,[15] The complexity of enumeration and reliability problems. SIAM J. Comput. 8 (1979) 410-421. | MR | Zbl
,Cité par Sources :