Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.
Mots clés : unique decipherability, rational set, sumset
@article{ITA_2011__45_2_225_0, author = {Saarela, Aleksi}, title = {Unique decipherability in the additive monoid of sets of numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {225--234}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/ita/2011018}, mrnumber = {2811655}, zbl = {1218.68108}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2011018/} }
TY - JOUR AU - Saarela, Aleksi TI - Unique decipherability in the additive monoid of sets of numbers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 225 EP - 234 VL - 45 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2011018/ DO - 10.1051/ita/2011018 LA - en ID - ITA_2011__45_2_225_0 ER -
%0 Journal Article %A Saarela, Aleksi %T Unique decipherability in the additive monoid of sets of numbers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 225-234 %V 45 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2011018/ %R 10.1051/ita/2011018 %G en %F ITA_2011__45_2_225_0
Saarela, Aleksi. Unique decipherability in the additive monoid of sets of numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 2, pp. 225-234. doi : 10.1051/ita/2011018. http://archive.numdam.org/articles/10.1051/ita/2011018/
[1] Theory of Codes. Academic Press (1985). | MR | Zbl
and ,[2] On a problem of partitions. Amer. J. Math. 64 (1942) 299-312. | MR | Zbl
,[3] Unique decipherability in the monoid of languages: an application of rational relations, in Proceedings of the Fourth International Computer Science Symposium in Russia (2009) 71-79. | Zbl
and ,[4] Commutative Semigroup Rings. University of Chicago Press (1984). | MR | Zbl
,[5] The frobenius problem in a free monoid, in Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science (2008) 421-432. | MR | Zbl
, and ,[6] The equivalence problem of finite substitutions on , with applications. Int. J. Found. Comput. Sci. 14 (2003) 699-710. | MR | Zbl
and ,[7] The power of commuting with finite sets of words. Theor. Comput. Syst. 40 (2007) 521-551. | MR | Zbl
,[8] Codes conjugués. Inform. Control. 20 (1972) 222-231. | MR | Zbl
,[9] The Diophantine Frobenius Problem. Oxford University Press (2005). | MR | Zbl
,Cité par Sources :