Sets of integers form a monoid, where the product of two sets A and B is defined as the set containing a+b for all and . We give a characterization of when a family of finite sets is a code in this monoid, that is when the sets do not satisfy any nontrivial relation. We also extend this result for some infinite sets, including all infinite rational sets.
Mots-clés : unique decipherability, rational set, sumset
@article{ITA_2011__45_2_225_0, author = {Saarela, Aleksi}, title = {Unique decipherability in the additive monoid of sets of numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {225--234}, publisher = {EDP-Sciences}, volume = {45}, number = {2}, year = {2011}, doi = {10.1051/ita/2011018}, mrnumber = {2811655}, zbl = {1218.68108}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2011018/} }
TY - JOUR AU - Saarela, Aleksi TI - Unique decipherability in the additive monoid of sets of numbers JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2011 SP - 225 EP - 234 VL - 45 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2011018/ DO - 10.1051/ita/2011018 LA - en ID - ITA_2011__45_2_225_0 ER -
%0 Journal Article %A Saarela, Aleksi %T Unique decipherability in the additive monoid of sets of numbers %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2011 %P 225-234 %V 45 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2011018/ %R 10.1051/ita/2011018 %G en %F ITA_2011__45_2_225_0
Saarela, Aleksi. Unique decipherability in the additive monoid of sets of numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 45 (2011) no. 2, pp. 225-234. doi : 10.1051/ita/2011018. http://archive.numdam.org/articles/10.1051/ita/2011018/
[1] Theory of Codes. Academic Press (1985). | MR | Zbl
and ,[2] On a problem of partitions. Amer. J. Math. 64 (1942) 299-312. | MR | Zbl
,[3] Unique decipherability in the monoid of languages: an application of rational relations, in Proceedings of the Fourth International Computer Science Symposium in Russia (2009) 71-79. | Zbl
and ,[4] Commutative Semigroup Rings. University of Chicago Press (1984). | MR | Zbl
,[5] The frobenius problem in a free monoid, in Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science (2008) 421-432. | MR | Zbl
, and ,[6] The equivalence problem of finite substitutions on , with applications. Int. J. Found. Comput. Sci. 14 (2003) 699-710. | MR | Zbl
and ,[7] The power of commuting with finite sets of words. Theor. Comput. Syst. 40 (2007) 521-551. | MR | Zbl
,[8] Codes conjugués. Inform. Control. 20 (1972) 222-231. | MR | Zbl
,[9] The Diophantine Frobenius Problem. Oxford University Press (2005). | MR | Zbl
,Cité par Sources :