We introduce a type of isomorphism among strategic games that we call local isomorphism. Local isomorphisms is a weaker version of the notions of strong and weak game isomorphism introduced in [J. Gabarro, A. Garcia and M. Serna, Theor. Comput. Sci. 412 (2011) 6675-6695]. In a local isomorphism it is required to preserve, for any player, the player's preferences on the sets of strategy profiles that differ only in the action selected by this player. We show that the game isomorphism problem for local isomorphism is equivalent to the same problem for strong or weak isomorphism for strategic games given in: general, extensive and formula general form. As a consequence of the results in [J. Gabarro, A. Garcia and M. Serna, Theor. Comput. Sci. 412 (2011) 6675-6695] this implies that local isomorphism problem for strategic games is equivalent to (a) the circuit isomorphism problem for games given in general form, (b) the boolean formula isomorphism problem for formula games in general form, and (c) the graph isomorphism problem for games given in explicit form.
Mots clés : game isomorphism, succinct representations, strategic games, formula games, computational complexity, circuit isomorphism, boolean formula isomorphism, graph isomorphism
@article{ITA_2013__47_2_147_0, author = {Gabarr\'o, Joaquim and Garc{\'\i}a, Alina and Serna, Maria}, title = {On the hardness of game equivalence under local isomorphism}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {147--169}, publisher = {EDP-Sciences}, volume = {47}, number = {2}, year = {2013}, doi = {10.1051/ita/2012024}, mrnumber = {3072315}, zbl = {1272.68141}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2012024/} }
TY - JOUR AU - Gabarró, Joaquim AU - García, Alina AU - Serna, Maria TI - On the hardness of game equivalence under local isomorphism JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2013 SP - 147 EP - 169 VL - 47 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2012024/ DO - 10.1051/ita/2012024 LA - en ID - ITA_2013__47_2_147_0 ER -
%0 Journal Article %A Gabarró, Joaquim %A García, Alina %A Serna, Maria %T On the hardness of game equivalence under local isomorphism %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2013 %P 147-169 %V 47 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2012024/ %R 10.1051/ita/2012024 %G en %F ITA_2013__47_2_147_0
Gabarró, Joaquim; García, Alina; Serna, Maria. On the hardness of game equivalence under local isomorphism. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 47 (2013) no. 2, pp. 147-169. doi : 10.1051/ita/2012024. http://archive.numdam.org/articles/10.1051/ita/2012024/
[1] The formula isomorphism problem. SIAM J. Comput. 30 (2000) 990-1009. | MR | Zbl
and ,[2] Equilibria problems on games : Complexity versus succinctness. J. Comput. Syst. Sci. 77 (2011) 1172-1197. | MR | Zbl
, and ,[3] Robust implementation in general mechanisms. Games Econ. Behav. 71 (2011) 261-281. | MR | Zbl
and ,[4] Boolean games revisited, in ECAI 2006, 17th European Conference on Artificial Intelligence (2006) 265-269.
, , and ,[5] On the computational complexity of some classical equivalence relations on boolean functions. Theory Comput. Syst. 31 (1998) 679-693. | MR | Zbl
, and ,[6] A classification of 2 × 2 bimatrix games. Cahiers du C.E.R.O 29 (1987) 69-84. | MR | Zbl
,[7] On the complexity of game isomorphism, in Mathematical Foundations of Computer Science 2007, 32nd International Symposium, MFCS 2007. Lect. Notes Comput. Sci. 4708 (2007) 559-571. | MR | Zbl
, and ,[8] The complexity of game isomorphism. Theor. Comput. Sci. 412 (2011) 6675-6695. | MR | Zbl
, and ,[9] The Complexity of Angel-Daemons and Game Isomorphism. Ph.D. thesis, Universitat Politècnica de Catalunya (Barcelona Tech) (2012).
,[10] On some geometry and equivalence classes of normal form games. Inter. J. Game Theory 4 (2006) 561-581. | MR | Zbl
,[11] A taxonomy of all ordinal 2 × 2 games. Theory Decis. 24 (1988) 99-117. | MR
and ,[12] The Graph Isomorphism Problem : Its Structural Complexity. Birkhauser (1993). | MR | Zbl
, and ,[13] Weighted boolean formula games, in Internet and Network Economics, Third International Workshop, WINE 2007. Lect. Notes Comput. Sci. 4858 (2007) 469-481.
, and ,[14] Non-Cooperative Games, in Classics in Game Theory (1997) 14-26. | Zbl
,[15] An Introduction to Game Theory. Oxford University Press (2003).
,[16] A Course in Game Theory. MIT Press (1994). | MR | Zbl
and ,[17] The computational complexity of Nash equilibria in concisely represented games, in ACM Conf. Electr. Commer. (2006) 270-279.
and ,[18] Ontogame : Weaving the semantic web by online games, in ESWC-2008. Lect. Notes Comput. Sci. 5021 (2008) 751-766.
and ,[19] Games with purpose for the semantic web. IEEE Intell. Syst. 23 (2008) 50-60.
and ,[20] Games with a purpose. Comput. 39 (2006) 92-94.
,[21] Best-response potential games. Econ. Lett. 66 (2000) 289-295. | MR | Zbl
, ,Cité par Sources :