Rauzy fractals are compact sets with fractal boundary that can be associated with any unimodular Pisot irreducible substitution. These fractals can be defined as the Hausdorff limit of a sequence of compact sets, where each set is a renormalized projection of a finite union of faces of unit cubes. We exploit this combinatorial definition to prove the connectedness of the Rauzy fractal associated with any finite product of three-letter Arnoux-Rauzy substitutions.
Mots-clés : Rauzy fractals, Arnoux-Rauzy substitutions, discrete planes
@article{ITA_2014__48_3_249_0, author = {Berth\'e, Val\'erie and Jolivet, Timo and Siegel, Anne}, title = {Connectedness of fractals associated with {Arnoux-Rauzy} substitutions}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {249--266}, publisher = {EDP-Sciences}, volume = {48}, number = {3}, year = {2014}, doi = {10.1051/ita/2014008}, mrnumber = {3302487}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2014008/} }
TY - JOUR AU - Berthé, Valérie AU - Jolivet, Timo AU - Siegel, Anne TI - Connectedness of fractals associated with Arnoux-Rauzy substitutions JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2014 SP - 249 EP - 266 VL - 48 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2014008/ DO - 10.1051/ita/2014008 LA - en ID - ITA_2014__48_3_249_0 ER -
%0 Journal Article %A Berthé, Valérie %A Jolivet, Timo %A Siegel, Anne %T Connectedness of fractals associated with Arnoux-Rauzy substitutions %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2014 %P 249-266 %V 48 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2014008/ %R 10.1051/ita/2014008 %G en %F ITA_2014__48_3_249_0
Berthé, Valérie; Jolivet, Timo; Siegel, Anne. Connectedness of fractals associated with Arnoux-Rauzy substitutions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 48 (2014) no. 3, pp. 249-266. doi : 10.1051/ita/2014008. http://archive.numdam.org/articles/10.1051/ita/2014008/
[1] Rational numbers with purely periodic β-expansion. Bull. London Math. Soc. 42 (2010) 538-552. | MR | Zbl
, , and ,[2] Symbolic dynamics and Markov partitions. Bull. Amer. Math. Soc. (N.S.) 35 (1998) 1-56. | MR | Zbl
,[3] Connectedness of number theoretic tilings. Discrete Math. Theor. Comput. Sci. 7 (2005) 269-312 (electronic). | MR | Zbl
and ,[4] Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions. Monatsh. Math. 155 (2008) 377-419. | MR | Zbl
, , and ,[5] Représentation géométrique de suites de complexit*error*é2n + 1. Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR | Zbl
and ,[6] Functional stepped surfaces, flips, and generalized substitutions. Theoret. Comput. Sci. 380 (2007) 251-265. | MR | Zbl
, , and ,[7] Discrete planes, Z2-actions, Jacobi-Perron algorithm and substitutions. Ann. Inst. Fourier 52 (2002) 305-349. | Numdam | MR | Zbl
, and ,[8] Two-dimensional iterated morphisms and discrete planes. Theoret. Comput. Sci. 319 (2004) 145-176. | MR | Zbl
, and ,[9] Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181-207. | MR | Zbl
and ,[10] Geometric theory of unimodular Pisot substitutions. Amer. J. Math. 128 (2006) 1219-1282. | MR | Zbl
and ,[11] The branch locus for one-dimensional Pisot tiling spaces. Fund. Math. 204 (2009) 215-240. | MR | Zbl
, and ,[12] Pure discrete spectrum in substitution tiling spaces. Discrete Contin. Dyn. Syst. 33 (2013) 579-597. | MR | Zbl
, and ,[13] Selfdual substitutions in dimension one, European J. Combin. 33 (2012) 981-1000. | MR | Zbl
, , and ,[14] Combinatorics, automata and number theory, Encyclopedia of Mathematics and its Applications, vol. 135. Cambridge University Press (2010). | MR | Zbl
and ,[15] Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly, Algebraic and topological dynamics, Contemp. Math., vol. 385. Amer. Math. Soc. Providence, RI (2005) 333-364. | MR | Zbl
, and ,[16] Substitutive Arnoux-Rauzy sequences have pure discrete spectrum. Unif. Distrib. Theory 7 (2012) 173-197. | MR
, and ,[17] A study of Jacobi-Perron boundary words for the generation of discrete planes. Theoret. Comput. Sci. 502 (2013) 118-142. | MR | Zbl
, , and ,[18] Markov partitions are not smooth. Proc. Amer. Math. Soc. 71 (1978) 130-132. | MR | Zbl
,[19] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, revised ed., Lect. Notes Math., vol. 470. With a preface by David Ruelle, edited by Jean-René Chazottes. Springer-Verlag, Berlin (2008). | MR | Zbl
,[20] Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77-89. | MR | Zbl
,[21] Geometric representation of substitutions of Pisot type. Trans. Amer. Math. Soc. 353 (2001) 5121-5144. | MR | Zbl
and ,[22] Fonctions de récurrence des suites d'Arnoux-Rauzy et réponse à une question de Morse et Hedlund. Ann. Inst. Fourier Grenoble 56 (2006) 2249-2270. | Numdam | MR | Zbl
and ,[23] Weak mixing and eigenvalues for Arnoux-Rauzy sequences. Ann. Inst. Fourier 58 (2008) 1983-2005. | Numdam | MR | Zbl
, and ,[24] Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 1265-1276. | MR | Zbl
, and ,[25] Decomposition theorem on invertible substitutions. Osaka J. Math. 35 (1998) 821-834. | MR | Zbl
and ,[26] Multidimensional Sturmian sequences and generalized substitutions. Internat. J. Found. Comput. Sci. 17 (2006) 575-599. | MR | Zbl
,[27] Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recognition 42 (2009) 2229-2238. | MR | Zbl
,[28] Geometric study of the beta-integers for a Perron number and mathematical quasicrystals. J. Théor. Nombres Bordeaux 16 (2004) 125-149. | Numdam | MR | Zbl
and ,[29] Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals. Acta Arith. 124 (2006) 1-15. | MR | Zbl
and ,[30] Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms. Tokyo J. Math. 16 (1993) 441-472. | MR | Zbl
and ,[31] Parallelogram tilings and Jacobi-Perron algorithm. Tokyo J. Math. 17 (1994) 33-58. | MR | Zbl
and ,[32] Atomic surfaces, tilings and coincidence. I. Irreducible case. Israel J. Math. 153 (2006) 129-155. | MR | Zbl
and ,[33] An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge (1995). | MR | Zbl
and ,[34] Combinatorics on words, Cambridge Mathematical Library, Cambridge University Press, Cambridge (1997). | MR | Zbl
,[35] Frontière du fractal de Rauzy et système de numération complexe. Acta Arith. 95 (2000) 195-224. | MR | Zbl
,[36] Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM | MR
and ,[37] Numeration systems and Markov partitions from self-similar tilings. Trans. Amer. Math. Soc. 351 (1999) 3315-3349. | MR | Zbl
,[38] Substitutions in dynamics, arithmetics and combinatorics, Lect. Notes Math., vol. 1794. Springer-Verlag, Berlin (2002). | MR
,[39] Substitution dynamical systems-spectral analysis, second edition, Lect. Notes Math., vol. 1294. Springer-Verlag, Berlin (2010). | MR | Zbl
,[40] Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147-178. | Numdam | MR | Zbl
,[41] Géométrie discrète, calculs en nombres entiers et algorithmes, Ph.D. thesis. Université Louis Pasteur, Strasbourg (1991). | Zbl
,[42] Représentations géométrique, combinatoire et arithmétique des systèmes substitutifs de type pisot, Ph.D. thesis. Université de la Méditerranée (2000).
,[43] Topological properties of Rauzy fractal. Mém. Soc. Math. Fr. To appear (2010). | Numdam | MR | Zbl
and ,[44] The structure of invertible substitutions on a three-letter alphabet. Adv. in Appl. Math. 32 (2004) 736-753. | MR | Zbl
, and ,[45] Groups, tilings, and finite state automata. AMS Colloquium lecture notes. Unpublished manuscript (1989).
,Cité par Sources :