The edge-bandwidth of a graph is the bandwidth of the line graph of . Determining the edge-bandwidth of triangular grids is an open problem posed in 2006. Previously, an upper bound and an asymptotic lower bound were found to be and respectively. In this paper we provide a lower bound and show that it gives the exact values of for and . Also, we show the upper bound for .
Accepté le :
DOI : 10.1051/ita/2014027
Mots clés : Bandwidth, edge-bandwidth, triangular grid, lower bound, upper bound
@article{ITA_2015__49_1_47_0, author = {Lin, Lan and Lin, Yixun}, title = {New bounds on the edge-bandwidth of triangular grids}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {47--60}, publisher = {EDP-Sciences}, volume = {49}, number = {1}, year = {2015}, doi = {10.1051/ita/2014027}, mrnumber = {3342172}, zbl = {1314.05177}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2014027/} }
TY - JOUR AU - Lin, Lan AU - Lin, Yixun TI - New bounds on the edge-bandwidth of triangular grids JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2015 SP - 47 EP - 60 VL - 49 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2014027/ DO - 10.1051/ita/2014027 LA - en ID - ITA_2015__49_1_47_0 ER -
%0 Journal Article %A Lin, Lan %A Lin, Yixun %T New bounds on the edge-bandwidth of triangular grids %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2015 %P 47-60 %V 49 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2014027/ %R 10.1051/ita/2014027 %G en %F ITA_2015__49_1_47_0
Lin, Lan; Lin, Yixun. New bounds on the edge-bandwidth of triangular grids. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 1, pp. 47-60. doi : 10.1051/ita/2014027. http://archive.numdam.org/articles/10.1051/ita/2014027/
R. Akhtar, T. Jiang and D. Pritikin, Edge-bandwidth of the triangular grid. Electron. J. Combin. 14 (2007) #R67. | MR | Zbl
Asymptotic determination of edge-bandwidth of grids and Hamming graphs. SIAM J. Discrete Math. 22 (2008) 425–449. | DOI | MR | Zbl
, and ,On the edge-bandwidth of graph products. Theoret. Comput. Sci. 359 (2006) 43–57. | DOI | MR | Zbl
, and ,J.A. Bondy and U.S.R. Murty, Graph Theory. Springer-Verlag, Berlin (2008). | MR | Zbl
New results on edge-bandwidth. Theoret. Comput. Sci. 309 (2003) 503–513. | DOI | MR | Zbl
, and ,The bandwidth problem for graphs and matrices – A survey. J. Graph Theory 6 (1982) 223–254. | DOI | MR | Zbl
, , and ,Optimal labeling of a product of two paths. Discrete Math. 11 (1975) 249–253. | DOI | MR | Zbl
,A survey of graph layout problems. ACM Comput. Surveys 34 (2002) 313–356. | DOI
, and ,The edge-bandwidth of theta graphs. J. Graph Theory 35 (2000) 89–98. | DOI | MR | Zbl
, , and ,Optimal numbering and isoperimetric problems on graphs. J. Combin. Theory 1 (1966) 385–393. | DOI | MR | Zbl
,On the bandwidth of triangulated triangles. Discrete Math. 138 (1995) 261–265. | DOI | MR | Zbl
, and ,Edge-bandwidth of graphs. SIAM J. Discrete Math. 12 (1999) 307–316. | DOI | MR | Zbl
, , and ,Cutwidth of triangulated grids. Discrete Math. 331 (2014) 89–92. | DOI | MR | Zbl
, and ,Edge-bandwidth of grids and tori. Theoret. Comput. Sci. 369 (2006) 35–43. | DOI | MR | Zbl
and ,Cité par Sources :