The well-known expansion of rational integers in an arbitrary integer base different from is exploited to study relations between numerical monoids and certain subsemigroups of the multiplicative semigroup of nonzero integers.
Accepté le :
DOI : 10.1051/ita/2016005
Mots-clés : Numerical monoid, digital representation, digital semigroup, Frobenius number
@article{ITA_2016__50_1_67_0, author = {Brunotte, Horst}, title = {Digital semigroups}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {67--79}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016005}, zbl = {1391.11124}, mrnumber = {3518159}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2016005/} }
TY - JOUR AU - Brunotte, Horst TI - Digital semigroups JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 67 EP - 79 VL - 50 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2016005/ DO - 10.1051/ita/2016005 LA - en ID - ITA_2016__50_1_67_0 ER -
%0 Journal Article %A Brunotte, Horst %T Digital semigroups %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 67-79 %V 50 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2016005/ %R 10.1051/ita/2016005 %G en %F ITA_2016__50_1_67_0
Brunotte, Horst. Digital semigroups. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Special issue dedicated to the 15th "Journées Montoises d'Informatique Théorique", Tome 50 (2016) no. 1, pp. 67-79. doi : 10.1051/ita/2016005. http://archive.numdam.org/articles/10.1051/ita/2016005/
The semigroup of combinatorial configurations. Semigroup Forum 84 (2012) 91–96. | DOI | MR | Zbl
and ,Negative bases and automata. Discrete Math. Theoret. Comput. Sci. 13 (2011) 75–93. | MR | Zbl
and ,Intorno all’aritmetica dei sistemi numerici a base negativa con particolare riguardo al sistema numerico a base negativo-decimale per lo studio delle sue analogie coll’aritmetica ordinaria (decimale). Giornale di matematiche di Battaglini 23 (1885) 203–221, 367. | JFM
,D.E. Knuth, The Art of Computer Programming. In Vol. 2. Seminumerical algorithms, 3rd edition. Addison-Wesley, Reading, MA (1998). | MR | Zbl
Basic digit sets for radix representation. J. Assoc. Comput. Mach. 29 (1982) 1131–1143. | DOI | MR | Zbl
,Frobenius pseudo-varieties in numerical semigroups. Ann. Mat. Pura Appl. 194 (2015) 275–287. | DOI | MR | Zbl
and ,Sets of positive integers closed under product and the number of decimal digits. J. Number Theory 147 (2015) 1–13. | DOI | MR | Zbl
, and ,Arf numerical semigroups. J. Algebra 276 (2004) 3–12. | DOI | MR | Zbl
, , and ,Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations. Semigroup Forum 88 (2014) 11–20. | DOI | MR | Zbl
and ,Cité par Sources :