We implement a decision procedure for answering questions about a class of infinite words that might be called (for lack of a better name) “Fibonacci-automatic”. This class includes, for example, the famous Fibonacci word , the fixed point of the morphism and . We then recover many results about the Fibonacci word from the literature (and improve some of them), such as assertions about the occurrences in of squares, cubes, palindromes, and so forth.
Accepté le :
DOI : 10.1051/ita/2016010
Mots clés : Decision procedure, infinite word, Fibonacci-automatic – square, cube, palindrome, first-order logic, Fibonacci representation – quasiperiod, unbordered word, Lyndon word, uniform recurrence – linear recurrence, critical exponent
@article{ITA_2016__50_1_39_0, author = {Mousavi, Hamoon and Schaeffer, Luke and Shallit, Jeffrey}, title = {Decision algorithms for {Fibonacci-automatic} {Words,} {I:} {Basic} results}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {39--66}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016010}, mrnumber = {3518158}, zbl = {1366.68226}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2016010/} }
TY - JOUR AU - Mousavi, Hamoon AU - Schaeffer, Luke AU - Shallit, Jeffrey TI - Decision algorithms for Fibonacci-automatic Words, I: Basic results JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 39 EP - 66 VL - 50 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2016010/ DO - 10.1051/ita/2016010 LA - en ID - ITA_2016__50_1_39_0 ER -
%0 Journal Article %A Mousavi, Hamoon %A Schaeffer, Luke %A Shallit, Jeffrey %T Decision algorithms for Fibonacci-automatic Words, I: Basic results %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 39-66 %V 50 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2016010/ %R 10.1051/ita/2016010 %G en %F ITA_2016__50_1_39_0
Mousavi, Hamoon; Schaeffer, Luke; Shallit, Jeffrey. Decision algorithms for Fibonacci-automatic Words, I: Basic results. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 1, pp. 39-66. doi : 10.1051/ita/2016010. http://archive.numdam.org/articles/10.1051/ita/2016010/
Efficient algorithms for Zeckendorf arithmetic. Fibonacci Quart. 51 (2013) 249–256. | MR | Zbl
, , and ,Periodicity, repetitions, and orbits of an automatic sequence. Theoret. Comput. Sci. 410 (2009) 2795–2803. | DOI | MR | Zbl
, and ,J.-P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). | MR | Zbl
Self-generating sets, integers with missing blocks, and substitutions. Discrete Math. 292 (2005) 1–15. | DOI | MR | Zbl
, and ,J. Berstel, Mots de Fibonacci. Séminaire d’Informatique Théorique, LITP 6-7 (1980–81) 57–78.
J. Berstel, Fonctions rationnelles et addition. In Théorie des Langages, École de printemps d’informatique théorique, edited by M. Blab. LITP (1982) 177–183.
J. Berstel, Fibonacci Words – A Survey. In The Book of L, edited by G. Rozenberg and A. Salomaa. Springer-Verlag (1986) 13–27. | Zbl
Quelques mots sur la droite projective réelle. J. Théorie Nombres Bordeaux 5 (1993) 23–51. | DOI | Numdam | MR | Zbl
and ,Logic and -recognizable sets of integers. Bull. Belgian Math. Soc. 1 (1994) 191–238. Corrigendum, Bull. Belg. Math. Soc. 1 (1994) 577. | MR | Zbl
, , and ,Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181 (1997) 17–43. | DOI | MR | Zbl
and ,Weak secord-order arithmetic and finite automata. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 6 (1960) 66–92. Reprinted in The Collected Works of J. Richard Büchi, edited by S. Mac Lane and D. Siefkes. Springer-Verlag (1990) 398–424. | DOI | MR | Zbl
,Fibonacci representations. Fibonacci Quart. 6 (1968) 193–220. | MR | Zbl
,J. Cassaigne, Sequences with grouped factors. In Developments in Language Theory III. Aristotle University of Thessaloniki (1998) 211–222.
J. Cassaigne, Recurrence in infinite words. In STACS 2001, edited by A. Ferreira and H. Reichel. Vol. 2010 of Lect. Notes Comput. Sci. Springer-Verlag (2001) 1–11. | MR | Zbl
Enumeration and decidable properties of automatic sequences. Int. J. Found. Comp. Sci. 23 (2012) 1035–1066. | DOI | MR | Zbl
, and ,M. Christou, M. Crochemore and C.S. Iliopoulos, Quasiperiodicities in Fibonacci strings. Preprint arXiv:1201.6162 (2012). To appear in Ars Combinatoria. | MR
Symmetric Fibonacci words. Fibonacci Quart. 31 (1993) 251–255. | MR | Zbl
,Uniform tag sequences. Math. Systems Theory 6 (1972) 164–192. | DOI | MR | Zbl
,Borders of Fibonacci strings. J. Combin. Math. Combin. Comput. 20 (1996) 81–87. | MR | Zbl
, and ,Least periods of factors of infinite words. RAIRO: ITA 43 (2009) 165–178. | Numdam | MR | Zbl
and ,J.D. Currie, N. Rampersad and K. Saari, Suffix conjugates for a class of morphic subshifts. In WORDS 2013, edited by J. Karhumäki, A. Lepistö and L. Zamboni. Vol. 8079 of Lect. Notes Comput. Sci. Springer-Verlag (2013) 95–106. | MR
A combinatorial property of the Fibonacci words. Inform. Process. Lett. 12 (1981) 193–195. | DOI | MR | Zbl
,Palindromes in the Fibonacci word. Inform. Process. Lett. 55 (1995) 217–221. | DOI | MR | Zbl
,C.F. Du, H. Mousavi, L. Schaeffer and J. Shallit, Decision algorithms for Fibonacci-automatic words, II: Related sequences and avoidability. In preparation (2016).
C.F. Du, H. Mousavi, L. Schaeffer and J. Shallit, Decision algorithms for Fibonacci-automatic words, III: Enumeration and abelian properties. To appear in Int. J. Found. Comput. Sci (2016). | MR
Collapse: A Fibonacci and Sturmian game. Amer. Math. Monthly 122 (2015) 515–527. | DOI | MR | Zbl
and ,Palindromic prefixes and episturmian words. J. Combin. Theory. Ser. A 113 (2006) 1281–1304. | DOI | MR | Zbl
,Systems of numeration. Amer. Math. Monthly 92 (1985) 105–114. | DOI | MR | Zbl
,The exact number of squares in Fibonacci words. Theoret. Comput. Sci. 218 (1999) 95–106. | DOI | MR | Zbl
and ,Linear numeration systems of order two. Inform. Comput. 77 (1988) 233–259. | DOI | MR | Zbl
,Fibonacci representations and finite automata. IEEE Trans. Inform. Theory 37 (1991) 393–399. | DOI | MR | Zbl
,Representations of numbers and finite automata. Math. Systems Theory 25 (1992) 37–60. | DOI | MR | Zbl
,C. Frougny and B. Solomyak, On representation of integers in linear numeration systems. In Ergodic Theory of Actions (Warwick, 1993–1994), edited by M. Pollicott and K. Schmidt. Vol. 228 of London Math. Soc. Lect. Note Ser. Cambridge University Press (1996) 345–368. | MR | Zbl
D. Goc, D. Henshall and J. Shallit, Automatic theorem-proving in combinatorics on words. In CIAA 2012, edited by N. Moreira and R. Reis. Vol. 7381 of Lect. Notes Comput. Sci. Springer-Verlag (2012) 180–191. | MR | Zbl
D. Goc, H. Mousavi and J. Shallit, On the number of unbordered factors. In LATA 2013, edited by A.-H. Dediu, C. Martin-Vide, and B. Truthe. Vol. 7810 of Lect. Notes Comput. Sci. Springer-Verlag (2013) 299–310. | MR
D. Goc, K. Saari and J. Shallit, Primitive words and Lyndon words in automatic and linearly recurrent sequences. In LATA 2013, edited by A.-H. Dediu, C. Martin-Vide and B. Truthe. Vol. 7810 of Lect. Notes Comput. Sci. Springer-Verlag (2013) 311–322. | MR
D. Goc, L. Schaeffer and J. Shallit, The subword complexity of -automatic sequences is -synchronized. In DLT 2013, edited by M.-P. Béal and O. Carton. Vol. 7907 of Lect. Notes Comput. Sci. Springer-Verlag (2013) 252–263. | MR
On the number of frames of binary words. Theoret. Comput. Sci. 412 (2011) 5276–5284. | DOI | MR | Zbl
and ,S. Homer and A.L. Selman, Computability and Complexity Theory, 2nd edition. Springer-Verlag (2011). | MR | Zbl
J.E. Hopcroft, An algorithm for minimizing the states in a finite automaton. In The Theory of Machines and Computation, edited by Z. Kohavi. Academic Press, New York (1971) 189–196. | MR | Zbl
A characterization of the squares in a Fibonacci string. Theoret. Comput. Sci. 172 (1997) 281–291. | DOI | MR | Zbl
, and ,On cube-free -words generated by binary morphisms. Disc. Appl. Math. 5 (1983) 279–297. | DOI | MR | Zbl
,R. Kolpakov and G. Kucherov, On maximal repetitions in words. In Fundamentals of Computation Theory: FCT ’99, edited by G. Ciobanu and G. Păun. Vol. 1684 of Lect. Notes Comput. Sci. Springer-Verlag (1999) 374–385. | MR | Zbl
Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci. Simon Stevin 29 (1952) 190–195. | Zbl
,Quasiperiodic infinite words: some answers. Bull. Eur. Assoc. Theor. Comput. Sci. 84 (2004) 128–138. | MR | Zbl
and ,Repetitions in the Fibonacci infinite word. RAIRO: ITA 26 (1992) 199–204. | Numdam | MR | Zbl
and ,Words and forbidden factors. Theoret. Comput. Sci. 273 (2002) 99–117. | DOI | MR | Zbl
, and ,Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1–42. | DOI | JFM | MR
and ,Bemerkungen zur Theorie der Diophantischen Approximationen. Abh. Math. Sem. Hamburg 1 (1922) 77–98,250–251. Reprinted in Collected Mathematical Papers 3 57–80. | DOI | JFM | MR
,Fibonacci numbers and words. Discrete Math. 173 (1997) 197–207. | DOI | MR | Zbl
,M. Presburger, Über die Volständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Vol. 395 of Sparawozdanie z I Kongresu matematyków krajów slowianskich. Warsaw (1929) 92–101. | JFM
On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation. Hist. Phil. Logic 12 (1991) 225–233. | DOI | MR | Zbl
,K. Saari, Periods of factors of the Fibonacci word. In WORDS 07 (2007).
Lyndon words and Fibonacci numbers. J. Combin. Theory. Ser. A 121 (2014) 34–44. | DOI | MR | Zbl
,The critical exponent is computable for automatic sequences. Internat. J. Found. Comp. Sci. 23 (2012) 1611–1626. | DOI | MR | Zbl
and ,P. Séébold, Propriétés combinatoires des mots infinis engendrés par certains morphismes. Ph. D. thesis, Université P. et M. Curie, Institut de Programmation, Paris (1985).
A generalization of automatic sequences. Theoret. Comput. Sci. 61 (1988) 1–16. | DOI | MR | Zbl
,J. Shallit, Decidability and enumeration for automatic sequences: a survey. In CSR 2013, edited by A.A. Bulatov and A.M. Shur. Vol. 7913 of Lect. Notes Comput. Sci. Springer-Verlag (2013) 49–63. | MR
Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Liège 41 (1972) 179–182. | MR | Zbl
,Cité par Sources :