By using the universal Diophantine representation of recursively enumerable sets of positive integers due to Matiyasevich we construct a -rational series over a binary alphabet which has a maximal image complexity in the sense that all recursively enumerable sets of positive integers are obtained as the sets of positive coefficients of the series where . As a consequence we obtain various undecidability results for -rational series.
Accepté le :
DOI : 10.1051/ita/2017001
Mots-clés : Rational series, recursively enumerable set, Diophantine representation, undecidability
@article{ITA_2017__51_1_1_0, author = {Honkala, Juha}, title = {Rational series with high image complexity}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {1--6}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/ita/2017001}, mrnumber = {3678025}, zbl = {1371.68152}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita/2017001/} }
TY - JOUR AU - Honkala, Juha TI - Rational series with high image complexity JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2017 SP - 1 EP - 6 VL - 51 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita/2017001/ DO - 10.1051/ita/2017001 LA - en ID - ITA_2017__51_1_1_0 ER -
%0 Journal Article %A Honkala, Juha %T Rational series with high image complexity %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2017 %P 1-6 %V 51 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita/2017001/ %R 10.1051/ita/2017001 %G en %F ITA_2017__51_1_1_0
Honkala, Juha. Rational series with high image complexity. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 1, pp. 1-6. doi : 10.1051/ita/2017001. http://archive.numdam.org/articles/10.1051/ita/2017001/
J. Berstel and C. Reutenauer, Rational Series and Their Languages. Springer, Berlin (1988). | MR | Zbl
J. Berstel and C. Reutenauer, Noncommutative Rational Series With Applications. Cambridge University Press, Cambridge (2011). | MR | Zbl
The freeness problem over matrix semigroups and bounded languages. Inf. Comput. 237 (2014) 243–256. | DOI | MR | Zbl
and ,Products of matrices and recursively enumerable sets. J. Comput. Syst. Sci. 81 (2015) 468–472. | DOI | MR | Zbl
,W. Kuich and A. Salomaa, Semirings, Automata, Languages. Springer, Berlin (1986). | MR | Zbl
Y. Matiyasevich, Hilbert’s Tenth Problem, MIT Press, Cambridge (1993). | MR | Zbl
A. Salomaa, Computation and Automata. Springer, Berlin (1985). | Zbl
A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series. Springer, Berlin (1978). | MR | Zbl
Cité par Sources :