Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers and respectively, such that and are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
Mots-clés : numeration system, Pisot number, finite automaton, periodic point
@article{ITA_2002__36_3_293_0, author = {Frougny, Christiane}, title = {On multiplicatively dependent linear numeration systems, and periodic points}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {293--314}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/ita:2002015}, mrnumber = {1958245}, zbl = {1044.11004}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2002015/} }
TY - JOUR AU - Frougny, Christiane TI - On multiplicatively dependent linear numeration systems, and periodic points JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 293 EP - 314 VL - 36 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2002015/ DO - 10.1051/ita:2002015 LA - en ID - ITA_2002__36_3_293_0 ER -
%0 Journal Article %A Frougny, Christiane %T On multiplicatively dependent linear numeration systems, and periodic points %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 293-314 %V 36 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2002015/ %R 10.1051/ita:2002015 %G en %F ITA_2002__36_3_293_0
Frougny, Christiane. On multiplicatively dependent linear numeration systems, and periodic points. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 3, pp. 293-314. doi : 10.1051/ita:2002015. http://archive.numdam.org/articles/10.1051/ita:2002015/
[1] Pisot and Salem numbers. Birkhäuser (1992). | Zbl
, , , and ,[2] Développements en base de Pisot et répartition modulo 1. C. R. Acad. Sci. Paris 285 (1977) 419-421. | MR | Zbl
,[3] Comment écrire les nombres entiers dans une base qui n'est pas entière. Acta Math. Acad. Sci. Hungar. 54 (1989) 237-241. | Zbl
,[4] An extension of the Cobham-Semënov Theorem. J. Symb. Logic 65 (2000) 201-211. | Zbl
,[5] Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math. 6 (1960) 66-92. | MR | Zbl
,[6] Bertrand numeration systems and recognizability. Theoret. Comput. Sci. 181 (1997) 17-43. | MR | Zbl
and ,[7] On the base-dependence of sets of numbers recognizable by finite automata. Math. Systems Theory 3 (1969) 186-192. | MR | Zbl
,[8] A generalization of Cobham's Theorem. Theory Comput. Systems 31 (1998) 169-185. | Zbl
,[9] Automata, Languages and Machines, Vol. A. Academic Press (1974). | MR | Zbl
,[10] Une généralisation du théorème de Cobham. Acta Arithm. 67 (1994) 197-208. | MR | Zbl
,[11] Systems of numeration. Amer. Math. Monthly 92 (1985) 105-114. | MR | Zbl
,[12] Representation of numbers and finite automata. Math. Systems Theory 25 (1992) 37-60. | MR | Zbl
,[13] Conversion between two multiplicatively dependent linear numeration systems, in Proc. of LATIN 02. Springer-Verlag, Lectures Notes in Comput. Sci. 2286 (2002) 64-75. | MR
,[14] Automatic conversion from Fibonacci representation to representation in base , and a generalization. Internat. J. Algebra Comput. 9 (1999) 351-384. | MR | Zbl
and ,[15] On Representation of Integers in Linear Numeration Systems 228 (1996) 345-368. | MR | Zbl
and ,[16] On the context-freeness of the -expansions of the integers. Internat. J. Algebra Comput. 9 (1999) 347-350. | MR | Zbl
and ,[17] Systèmes de numération indépendants et syndéticité. Theoret. Comput. Sci. 204 (1998) 119-130. | MR | Zbl
,[18] Greedy numeration systems and regularity. Theory Comput. Systems 31 (1998) 111-133. | MR | Zbl
,[19] An Introduction to Symbolic Dynamics. Cambridge University Press (1995). | MR | Zbl
and ,[20] Algebraic Combinatorics on Words. Cambridge University Press (2002). | MR | Zbl
,[21] On the -expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | MR | Zbl
,[22] A dynamical property unique to the Lucas sequence. Fibonacci Quartely 39 (2001) 398-402. | MR | Zbl
and ,[23] Arithmetic and growth of periodic orbits. J. Integer Sequences 4 (2001), Article 01.2.1. | MR | Zbl
and ,[24] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR | Zbl
,[25] The Presburger nature of predicates that are regular in two number systems. Siberian Math. J. 18 (1977) 289-299. | MR | Zbl
,[26] Numeration systems, linear recurrences, and regular sets. Inform. Comput. 113 (1994) 331-347. | MR | Zbl
,Cité par Sources :