A shuffle ideal is a language which is a finite union of languages of the form where is a finite alphabet and the ’s are letters. We show how to represent shuffle ideals by special automata and how to compute these representations. We also give a temporal logic characterization of shuffle ideals and we study its expressive power over infinite words. We characterize the complexity of deciding whether a language is a shuffle ideal and we give a new quadratic algorithm for this problem. Finally we also present a characterization by subwords of the minimal automaton of a shuffle ideal and study the complexity of basic operations on shuffle ideals.
@article{ITA_2002__36_4_359_0, author = {H\'eam, Pierre-Cyrille}, title = {On shuffle ideals}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {359--384}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/ita:2003002}, mrnumber = {1965422}, zbl = {1034.68056}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2003002/} }
TY - JOUR AU - Héam, Pierre-Cyrille TI - On shuffle ideals JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 359 EP - 384 VL - 36 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2003002/ DO - 10.1051/ita:2003002 LA - en ID - ITA_2002__36_4_359_0 ER -
%0 Journal Article %A Héam, Pierre-Cyrille %T On shuffle ideals %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 359-384 %V 36 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2003002/ %R 10.1051/ita:2003002 %G en %F ITA_2002__36_4_359_0
Héam, Pierre-Cyrille. On shuffle ideals. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 4, pp. 359-384. doi : 10.1051/ita:2003002. http://archive.numdam.org/articles/10.1051/ita:2003002/
[1] The design and analysis of computer algorithms. Addison-Wesley (1974) 395-400. | MR | Zbl
, and ,[2] Implicit operations on finite -trivial semigroups and a conjecture of I. Simon. J. Pure Appl. Algebra 69 (1990) 205-218. | MR | Zbl
,[3] Opération polynomiales et hiérarchies de concaténation. Theoret. Comput. Sci. 91 (1991) 71-84. | MR | Zbl
,[4] Shuffle factorization is unique, Technical Report. LIAFA, Université Paris 7 (1999). | Zbl
and ,[5] Transductions and context-free languages. Teubner (1979) Verlag. | MR | Zbl
,[6] On the expressive power of temporal logic for finite words. J. Comput. System Sci. 46 (1993) 271-294. | MR | Zbl
, and ,[7] Automata, Languages and Machines, Vol. A. Academic Press (1974). | MR | Zbl
,[8] On the temporal analysis of fairness, in 12th ACM Symp. on Principles of Programming Languages (1980) 163-180.
, , and ,[9] Level 5/2 of the straubing-thérien hierarchy for two-letter alphabets, in Conference on Developments in Language Theory (DLT). Vienna (2001). | Zbl
and ,[10] Some complexity results for polynomial rational expressions. Theoret. Comput. Sci. (to appear). | MR | Zbl
,[11] Ordering by divisibility in abstract algebras, in Proc. of the London Mathematical Society, Vol. 2 (1952) 326-336. | MR | Zbl
,[12] Computing -free nfa from regular expressions in time. RAIRO: Theoret. Informatics Appl. 34 (2000) 257-277. | Numdam | MR | Zbl
and ,[13] Introduction to automata theory, languages, and computation. Addison-Wesley (1980). | MR | Zbl
and ,[14] Tense logic and the theory of linear order, Ph.D. Thesis. University of California, Los Angeles (1968).
,[15] Completeness and the expressive power of next time temporal logical system by semantic tableau method, Technical Report RR-0109. Inria, Institut National de Recherche en Informatique et en Automatique (1981).
,[16] Representation of events in nerve nets and finite automata. Princeton University Press, Automata Studies (1956) 3-42. | MR
,[17] Combinatorics on words. Cambridge Mathematical Library (1983). | MR | Zbl
,[18] Efficient parallel shuffle recognition. Parallel Process. Lett. 4 (1994) 455-463.
, , , and ,[19] Computational complexity. Addison Wesley (1994). | MR | Zbl
,[20] Automates, réseaux, formules, in Actes des journées “Informatiques et Mathématiques”. Luminy (1984). | Zbl
,[21] A constant time string shuffle algorithm on reconfigurable meshes. Int. J. Comput. Math. 68 (1998) 251-259. | MR | Zbl
, and ,[22] The temporal logic of programs, in 18th FOCS (1977) 46-57. | MR
,[23] Polynomial closure and unambiguous product. Theory Comput. Systems 30 (1997) 1-39. | MR | Zbl
and ,[24] A natural ring basis for shuffle algebra and an application to group schemes. J. Algebra 58 (1979) 432-454. | MR | Zbl
,[25] Piecewise testable events, in GI Conf. Springer-Verlag, Lecture Notes in Comput. Sci. 33 (1975) 214-222. | MR | Zbl
,[26] Le calcul rapide des mélanges de deux mots. Theoret. Comput. Sci. 47 (1986) 181-203. | MR | Zbl
,[27] Partially ordered finite monoids and a theorem of I. Simon. J. Algebra 119 (1985) 161-183. | MR | Zbl
and ,[28] Characterization of some classes of regular events. Theoret. Comput. Sci. 35 (1985) 17-42. | MR | Zbl
,[29] Finite semigroups varieties of the form VD. J. Pure Appl. Algebra 36 (1985) 53-94. | MR | Zbl
,[30] Classification of finite monoids: The language approach. Theoret. Comput. Sci. 14 (1981) 195-208. | MR | Zbl
,[31] Classifying regular events in symbolic logic. J. Comput. System Sci. 25 360-375. | MR | Zbl
,[32] Temporal logic and semidirect products: An effective characterization of the until hierarchy, in Proc. of the 37th Annual Symposium on Foundations of Computer Science. IEEE (1996) 256-263. | MR | Zbl
and ,[33] Classifying discrete temporal properties, in STACS'99. Springer-Verlag, Lecture Notes in Comput. Sci. 1563 (1999) 32-46. | Zbl
,[34] State complexity of regular languages, in Proc. of the International Workshop on Descriptional Complexity of Automata, Grammars and Related Structures (1999) 77-88.
,Cité par Sources :