The basic framework of domain -calculus was formulated in [39] more than ten years ago. This paper provides an improved formulation of a fragment of the -calculus without function space or powerdomain constructions, and studies some open problems related to this -calculus such as decidability and expressive power. A class of language equations is introduced for encoding -formulas in order to derive results related to decidability and expressive power of non-trivial fragments of the domain -calculus. The existence and uniqueness of solutions to this class of language equations constitute an important component of this approach. Our formulation is based on the recent work of Leiss [23], who established a sophisticated framework for solving language equations using Boolean automata (a.k.a. alternating automata [12, 35]) and a generalized notion of language derivatives. Additionally, the early notion of even-linear grammars is adopted here to treat another fragment of the domain -calculus.
Mots-clés : domain theory, mu-calculus, formal languages, boolean automata
@article{ITA_2003__37_4_337_0, author = {Zhang, Guo-Qiang}, title = {Domain mu-calculus}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {337--364}, publisher = {EDP-Sciences}, volume = {37}, number = {4}, year = {2003}, doi = {10.1051/ita:2003023}, mrnumber = {2053031}, zbl = {1038.03038}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ita:2003023/} }
TY - JOUR AU - Zhang, Guo-Qiang TI - Domain mu-calculus JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 337 EP - 364 VL - 37 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ita:2003023/ DO - 10.1051/ita:2003023 LA - en ID - ITA_2003__37_4_337_0 ER -
%0 Journal Article %A Zhang, Guo-Qiang %T Domain mu-calculus %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 337-364 %V 37 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ita:2003023/ %R 10.1051/ita:2003023 %G en %F ITA_2003__37_4_337_0
Zhang, Guo-Qiang. Domain mu-calculus. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 4, pp. 337-364. doi : 10.1051/ita:2003023. http://archive.numdam.org/articles/10.1051/ita:2003023/
[1] Domain theory in logical form. Ann. Pure Appl. Logic 51 (1991) 1-77. | MR | Zbl
,[2] Domain theory. Clarendon Press, Handb. Log. Comput. Sci. 3 (1995) 1-168. | MR
and ,[3] A domain equation for bisimulation. Inf. Comput. 92 (1991) 161-218. | MR | Zbl
,[4] The mu-calculus alternation-depth hierarchy is strict on binary trees. RAIRO Theoret. Informatics Appl. 33 (1999) 329-339. | Numdam | MR | Zbl
,[5] On a family of linear grammars. Inf. Control 7 (1964) 283-291. | MR | Zbl
and ,[6] Generalizations of regular events. Inf. Control 8 (1965) 56-63. | MR | Zbl
and ,[7] Equational axioms for regular sets. Technical Report 9101, Stevens Institute of Technology (1991). | Zbl
and ,[8] Towards an infinitary logic of domains: Abramsky logic for transition systems. Inf. Comput. 155 (1999) 170-201. | MR | Zbl
and ,[9] Simplifying the modal mu-calculus alternation hierarchy. Lecture Notes in Comput. Sci. 1373 (1998) 39-49. | MR | Zbl
,[10] A semantically based proof system for partial correctness and deadlock in CSP, in Proceedings, Symposium on Logic in Computer Science. Cambridge, Massachusetts (1986) 58-65.
,[11] On equations for regular languages, finite automata, and sequential networks. Theor. Comput. Sci. 10 (1980) 19-35. | MR | Zbl
and ,[12] Alternation. Journal of the ACM 28 (1981) 114-133. | MR | Zbl
, and ,[13] Completeness of Park induction. Theor. Comput. Sci. 177 (1997) 217-283 (MFPS'94). | Zbl
,[14] Alternating finite automata and related problems. Ph.D. thesis, Department of Mathematics and Computer Science, Kent State University (1991).
,[15] Constructions for alternating finite automata. Int. J. Comput. Math. 35 (1990) 117-132. | Zbl
, and ,[16] Semantic domains. Jan van Leeuwen edn., Elsevier, Handb. Theoretical Comput. Sci. B (1990) 633-674. | MR | Zbl
and ,[17] On the expressive completeness of the propositional mu-calculus with respect to monadic second order logic. Lecture Notes in Comput. Sci. (CONCUR'96) 1119 (1996) 263-277.
and ,[18] Disjunctive program analysis for algebraic data types. ACM Trans. Programming Languages and Systems 19 (1997) 752-804.
,[19] Stone Spaces. Cambridge University Press (1982). | MR | Zbl
,[20] Results on the propositional mu-calculus. Theor. Comput. Sci. 27 (1983) 333-354. | MR | Zbl
,[21] A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110 (1994) 366-390. | MR | Zbl
,[22] Succinct representation of regular languages by Boolean automata. Theor. Comput. Sci. 13 (1981) 323-330. | MR | Zbl
,[23] Language Equations. Monographs in Computer Science, Springer-Verlag, New York (1999). | MR | Zbl
,[24] -definable sets of integers. J. Symb. Log. 58 (1993) 291-313. | MR | Zbl
,[25] Fixed points vs. infinite generation. IEEE Computer Press Logic in Computer Science (1988) 402-409.
,[26] Fixed point characterization of infinite behaviour of finite state systems. Theor. Comput. Sci. 189 (1997) 1-69. | MR | Zbl
,[27] Automaton representation of linear conjunctive languages. Proceedings of DLT 2002, Lecture Notes in Comput. Sci. 2450 (2003) 393-404. | MR | Zbl
,[28] On the closure properties of linear conjunctive languages. Theor. Comput. Sci. 299 (2003) 663-685. | MR | Zbl
,[29] Concurrency and automata on infinite sequences. Lecture Notes in Comput. Sci. 154 (1981) 561-572. | Zbl
,[30] The Pisa Notes. Department of Computer Science, University of Edinburgh (1981).
,[31] A powerdomain construction. SIAM J. Computing 5 (1976) 452-487. | MR | Zbl
,[32] A decidable mu-calculus: Preliminary report, Proc. of IEEE 22nd Annual Symposium on Foundations of Computer Science (1981) 421-427.
,[33] On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operator. Hist. Philos. Logic 12 (1991) 225-233 (English translation of the original paper in 1930). | MR | Zbl
,[34] Finite automata and their decision problems. IBM J. Res. 3 (1959) 115-125. | MR | Zbl
and ,[35] Alternating automata and program verification. Computer Science Today - Recent Trends and Developments, Lecture Notes in Comput. Sci. 1000 (1995) 471-485.
,[36] Completeness of Kozen’s axiomatisation of the propositional -calculus. Inf. Comput. 157 (2000) 142-182. | Zbl
,[37] The Formal Semantics of Programming Languages. MIT Press (1993). | MR | Zbl
,[38] Regular Languages. Handbook of Formal Languages, Rozenberg and Salomaa, Springer-Verlag (1997) 41-110. | MR
,[39] Logic of Domains. Birkhauser, Boston (1991). | MR | Zbl
,Cité par Sources :